

SEMITEC

SEMITEC Corporation

－－D ，©（O）D THERMISTOR

サーミスタ

JリDE

1．サーミスタの用途 \cdot ．．． 3

5．パワーサーミスタのご使用方法と選定 \quad ．． 5

超高精度サーミスタ
■高精度サーミスタ

■薄型サーミスタ
－面実装サーミスタ

高耐熱サーミスタ

非接触温度センサ
AP Thermistor $\quad\left(-60^{\circ} \mathrm{C} \sim+150^{\circ} \mathrm{C}\right)$
AT Thermistor $\quad\left(-50^{\circ} \mathrm{C} \sim+110^{\circ} \mathrm{C}\right) \quad \ldots \ldots \ldots \ldots \ldots \ldots . .$.
ET Thermistor $\quad\left(-40^{\circ} \mathrm{C} \sim+100^{\circ} \mathrm{C}\right)$
12
JT Thermistor $\quad\left(-50^{\circ} \mathrm{C} \sim+125^{\circ} \mathrm{C}\right)$
KT Thermistor $\quad\left(-40^{\circ} \mathrm{C} \sim+125^{\circ} \mathrm{C}\right)$
HT Thermistor $\quad\left(-50^{\circ} \mathrm{C} \sim+125^{\circ} \mathrm{C}\right)$
NT Thermistor $\quad\left(-50^{\circ} \mathrm{C} \sim+300^{\circ} \mathrm{C}\right)$
$6 \sim 7$

CT Thermistor $\quad\left(-50^{\circ} \mathrm{C} \sim+250^{\circ} \mathrm{C}\right)$
18
19
NC Sensor $\quad\left(-10^{\circ} \mathrm{C} \sim+150^{\circ} \mathrm{C}\right)$
20
THERMOPILE $\quad\left(-20^{\circ} \mathrm{C} \sim+100^{\circ} \mathrm{C}\right)$
21
突入電流抑制サーミスタ Power Thermistor（ $-50^{\circ} \mathrm{C} \sim+200^{\circ} \mathrm{C}$ ）

突入電流竏制

Power Thermistor

｜医療機器・ヘルスケア

－自動車

カテーテル
X線診断装置
AED
MRI
例ポンプ
バイタルサインモニター電子体温計
血圧計
ウェアラブル機器

バッテリ
モータ
ラジエータ
カーエアコン
カーナビ
シートヒーター
インバータ・コンバータ
吸気•排気
キャバタタ
充電スタンド

｜O A 機器

プリンタ
複写機（コピー機）
スキャナ
プロジェクタ
ファクシミリ
ルーター

｜家電製品•住宅設備

｜情報機器

2．サーミスタの概要

サーミスタ（Thermistor）は，Thermally Sensitive Resistor（熱に敏感な抵抗体）の総称で，負の温度係数を有するNTCサーミスタを一般にサーミスタと呼んでいます。 サーミスタは金属酸化物を主原料とし高温にて焼結して得られるセラミック半導体で， その製造法や構造によって各種の形状•特性があり，温度測定や温度補償等に広くご利用頂いております。

3．基本特性

3－1．抵抗一温度特性

ある温度範囲における抵抗値と温度の関係で，
式1によって近似的に表されます。
$R_{1}=R_{2} \exp \left[B\left(\frac{1}{T_{1}}-\frac{1}{T_{2}}\right)\right]$
$T_{1}, ~ T_{2}$ ：絶対温度（K）
$R_{1}, ~ R_{2}: T_{1}, ~ T_{2}$ におけるゼロ負荷抵抗値（ $~(\Omega)$
B ：B 定数（K）

3－2．ゼロ負荷抵抗値

規定温度において，サーミスタの自己発熱による
抵抗値変化が無視出来るような十分低い
消費電力で測定した時のサーミスタの抵抗値です。

3－3．B 定数

抵抗一温度特性で任意の 2 点の温度から求めた抵抗值変化の大きさを表す定数で，式2によって表されます。
$\mathrm{B}=\frac{\operatorname{lnR_{1}-\operatorname {ln}R_{2}}}{\frac{1}{\mathrm{~T}_{1}}-\frac{1}{T_{2}}}$
この特性を logR と $1 / T$ でグラ 化すると，$^{\text {a }}$ ほぼ直線で表すことが可能です。

3－4．抵抗温度係数

任意の温度での $1^{\circ} \mathrm{C}$ 当たりのゼロ負荷抵抗値の変化率を表す係数で，式 3 で表されます。
$\alpha=\frac{1}{\mathrm{R}} \cdot \frac{\mathrm{dR}}{\mathrm{dT}} \times 100=-\frac{\mathrm{B}}{\mathrm{T}^{2}} \times 100$
α ：抵抗温度係数 $(\% / K)$
T：任意の絶対温度（K）
$R: T(K)$ におけるゼロ負荷抵抗値（ Ω ）
B：B 定数（K）

3－5．熱放散定数（JIS－C2570－1）

熱平衝状態でサーミスタの温度を自己発熱によって $1^{\circ} \mathrm{C}$ 上げるために必要な電力を表す定数です。 サーミスタの消費電力と温度上昇の比で求めます。

サーミスタの消費電力をP（mW）とすると
熱放散定数 $\delta\left(\mathrm{mW} /{ }^{\circ} \mathrm{C}\right)$ は式 4 で表されます。
$\mathrm{P}=\delta(\mathrm{Tb}-\mathrm{Ta})$
$\delta=\mathrm{P} /(\mathrm{Tb}-\mathrm{Ta})=\mathrm{I}^{2} \mathrm{R} /(\mathrm{Tb}-\mathrm{Ta})$
P ：サーミスタの消費電力（mW）
δ ：熱放散定数（ $\mathrm{mW} /{ }^{\circ} \mathrm{C}$ ）
Ta ：サーミスタの周囲温度（ ${ }^{\circ} \mathrm{C}$ ）
Tb：サーミスタが温度上昇して熱平衡状態に なった時のサーミスタの温度（ ${ }^{\circ} \mathrm{C}$ ）
－：サーミスタに流れる電流（mA）
$R \quad$ ：Tb（ ${ }^{\circ} \mathrm{C}$ ）時のサーミスタの抵抗値（ Ω ）
3－6．熱時定数（JIS－C2570－1）
サーミスタの熱的応答性の度合を表す定数です。 ゼロ負荷の状態でサーミスタの周囲温度を急変 させた時，サーミスタの温度か最初の温度と最終到達温度との温度差の 63.2% 変化するのに要する時間です。

熱時定数てを n 倍した時の値は下記のようになります。 $\tau=63.2 \% \quad 2 \tau=86.5 \% \quad 3 \tau=95.0 \%$

3－7．定格電力

定格周囲温度（一般に $25^{\circ} \mathrm{C}$ ）で連続してサーミスタに負荷出来る電力の最大値（ mW ）です。

サーミスタに電圧を印加すると自己発熱していき，周囲の温度に応じた熱平衡温度に到達しますが，過大な電力によって熱暴走したり，自己発熱の度合い によっては特性破壊されることもあるため，連続して負荷出来る電力の上限として定められています。

4．サーミスタので使用方法と覆定

NTC サーミスタは温度に対する抵抗値変化が大きいことから，温度センサとして広く使用されています。 しかしサーミスタの抵抗値変化は非線形のため，下記回路例のように固定抵抗器とサーミスタを直列に接続し，出力電圧を直線化（リニアライズ）する方法が一般的です。

サーミスタの直線化回路例

この回路において出力電圧 Vout は式5 で表され， サーミスタの抵抗一温度特性の表を用いることにより， サーミスタが検知した温度を特定することが出来ます。

$$
\text { Vout }=\frac{\text { Vcc }}{\text { Rth+Rs }} \times \text { Rs } \quad \text { (式 5) }
$$

```
Vcc : 電源電圧 (V)
Vout : 出力電圧 (V)
Rth : サーミスタ抵抗値(\Omega)
Rs : 固定抵抗器(\Omega)
```

直線化することで温度検知の精度を高めることが出来ますが，直線化出来る温度範囲は限られます。

例として，2 種類のサーミスタ（103AP－2，503AP－2）と 2 種類の固定抵抗器（ $10 \mathrm{k} \Omega, ~ 5 \mathrm{k} \Omega$ ）での組合せにおける出力電圧 Vout を左グラフに示します。 グラフより，サーミスタと固定抵抗器の組合せによって，直線化される温度範囲が異なることが分かります。

従って，予め検知精度が必要な温度範囲を決めた上で，使用するサーミスタと組み合せる固定抵抗器を選定する ことが望ましいと言えます。

5．パワーサーミスタのご使用方法と選定

パワーサーミスタは，NTC サーミスタの通電による自己発熱で温度が上昇することにより急激に抵抗値が減少する特性を応用した製品で，突入電流の抑制に使用します。

代表的な例として平滑コンデンサを使用するスイッチング電源が挙げられます。
電源投入時，平滑コンデンサの急速充電に伴い流れる突入電流をパワーサーミスタの初期抵抗により抑制， その後定常電流となった時には，サーミスタは自己発熱による負の温度特性のため抵抗値が減少し，電力損失を抑えることが出来ます。 パワーサーミスタは下記回路例のように接続されますが，整流前と整流後，どちらでも使用可能です。

パワーサーミスタの選定にあたつては，ご使用機器や部品が許容出来る電流値より必要な抵抗値を求め，求めた抵抗値と，許容コンデンサ容量，最大許容電流を満たすパワーサーミスタを選定します。但し，通電によるパワーサーミスタの自己発熱や周囲温度の上昇によりパワーサーミスタの抵抗値は減少し，伴って最大許容電流も減少しますので，選定の際には注意が必要です。
また，パワーサーミスタの発熱に対して，基板や周辺部品への影響にも気を付ける必要が有ります。

薄膜サーミスタ

乡すthednjsios

FTサーミスタは，超小型化により，応答性が良く，高耐熱，高信頼と，従来のチップサーミスタの常識を超えたサーミスタです。

形 名

※ 1：テーピング対応は1005サイズのみです。

用 途

医療機器，ウェアラブル機器，高速電子体温計，OA機器，液晶パネル， セキュリティ機器， 1 H調理器，ロボット，計測機器，モバイル機器，
情報通信機器，レーザーダイオードモジュール

外形寸法図

〈Fig1〉

※2：L5寸法を 0.10 mm でご検討の場合にはご相談下さい。

定 格

形名	$\mathrm{R}_{25}{ }^{* 3}$	R_{25} 許容差	B定数＊4	熱放散定数 $\mathrm{mW} /{ }^{\circ} \mathrm{C}$	熱時定数＊5 S	定格電力 mW at $25^{\circ} \mathrm{C}$	電極タイプ別 使用温度範囲 ${ }^{\circ} \mathrm{C}$		
							1 ：Pt	2 ：Au／Ni	3 ：Au
103FT1005A5P	$10.0 \mathrm{k} \Omega$	$\pm 5 \%$	$3370 \mathrm{~K} \pm 1 \%$	約0．3	約1．0	1.5	$\begin{gathered} -40 \\ \sim \\ +250 \\ (+350) \end{gathered}$	$\begin{aligned} &-40 \\ &+ \\ &+125 \end{aligned}$	$\begin{aligned} & -40 \\ & +250 \end{aligned}$
103FT1005B5P	$10.0 \mathrm{k} \Omega$		$3435 \mathrm{~K} \pm 1 \%$						
103FT1005D5P	$10.0 \mathrm{k} \Omega$		$3969 \mathrm{~K} \pm 1 \%$						
503FT1005A5P	$50.0 \mathrm{k} \Omega$		$3370 \mathrm{~K} \pm 1 \%$						
503FT1005B5P	$50.0 \mathrm{k} \Omega$		$3435 \mathrm{~K} \pm 1 \%$						
364FT1005A5P	$360.0 \mathrm{k} \Omega$		$3370 \mathrm{~K} \pm 1 \%$						
364FT0603A5P	$360.0 \mathrm{k} \Omega$		$3370 \mathrm{~K} \pm 1 \%$	約0．2	約0．5	1.0			

※ $3: 25^{\circ} \mathrm{C}$ におけるゼロ負荷抵抗値 $\quad * 4: 25^{\circ} \mathrm{C}, ~ 85^{\circ} \mathrm{C}$ におけるゼロ負荷抵抗値より算出 $※ 5:$ ：静止空気中にて測定

性 能

試験名	電極タイプ	条件	判定基準
はんだ付け性	2 ：Au／Ni	$260^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C} 5 \mathrm{~s}$	はんだ付着率90\％以上
自然落下	全て	$\mathrm{H}=0.75 \mathrm{~m} 3$ 回（楓板上）	$\Delta \mathrm{R}, ~ \triangle \mathrm{~B} \pm 1 \%$
絶縁抵抗	全て	DC100V	100M 2 以上
高温試験1	$\begin{aligned} & 1: \mathrm{Pt} \\ & 3: \mathrm{Au} \end{aligned}$	$250^{\circ} \mathrm{C}$ 1000h	$\Delta \mathrm{R} \pm 5 \%, \Delta \mathrm{~B} \pm 1 \%$
高温試験2	2 ： $\mathrm{Au} / \mathrm{Ni}$	$125^{\circ} \mathrm{C}$ 1000h	$\Delta \mathrm{R} \pm 3 \%, \Delta \mathrm{~B} \pm 1 \%$
低温試験	全て	－40 ${ }^{\circ} \mathrm{C}$ 1000h	$\Delta \mathrm{R} \pm 3 \%, \Delta \mathrm{~B} \pm 1 \%$
温度サイクル試験	全て	$\begin{aligned} & -40^{\circ} \mathrm{C}(30 \mathrm{~min}) \rightarrow \text { 室温 }(3 \mathrm{~min}) \rightarrow \\ & 125^{\circ} \mathrm{C}(30 \mathrm{~min}) 100 \text { サイクル } \end{aligned}$	$\Delta \mathrm{R} \pm 3 \%, \Delta \mathrm{~B} \pm 1 \%$

推奨実装方法

電極タイプ	推奨実装方法
$1: \mathrm{Pt}$	導電性接着剤
$2: \mathrm{Au} / \mathrm{Ni}$	はんだ
$3: \mathrm{Au}$	ワイヤーボンディング

温度（ ${ }^{\circ} \mathrm{C}$ ）	形名						
	103FT1005A5P	103FT1005B5P	103FT1005D5P	503FT1005A5P	503FT1005B5P	364FT1005A5P	364FT0603A5P
－40	187.9	200.7	351.0	939.3	1，002	6，763	6，763
－30	110.7	117.0	185.0	553.4	584.7	3，984	3，984
－20	67.26	70.34	100.9	336.3	351.9	2，421	2，421
－10	42.10	43.55	57.00	210.5	217.7	1，516	1，516
0	27.08	27.71	33.33	135.4	138.5	974.8	974.8
10	17.86	18.11	20.12	89.31	90.48	643.0	643.0
20	12.07	12.12	12.53	60.33	60.58	434.4	434.4
25	10.00	10.00	10.00	50.00	50.00	360.0	360.0
30	8.332	8.299	8.038	41.66	41.50	299.9	299.9
40	5.871	5.804	5.295	29.36	29.03	211.4	211.4
50	4.216	4.139	3.575	21.08	20.70	151.8	151.8
60	3.081	3.006	2.472	15.40	15.04	110.9	110.9
70	2.288	2.220	1.746	11.44	11.11	82.36	82.36
80	1.725	1.666	1.258	8.623	8.331	62.09	62.09
85	1.505	1.451	1.075	7.527	7.257	54.19	54.19
90	1.318	1.269	0.9230	6.592	6.344	47.46	47.46
100	1.021	0.9797	0.6888	5.105	4.898	36.76	36.76
110	0.8003	0.7662	0.5220	4.002	3.829	28.81	28.81
120	0.6345	0.6064	0.4012	3.172	3.029	22.84	22.84
125	0.5671	0.5418	0.3535	2.836	2.706	20.42	20.42
130	0.5084	0.4854	0.3125	2.542	2.423	18.30	18.30
140	0.4113	0.3926	0.2465	2.057	1.960	14.81	14.81
150	0.3359	0.3207	0.1969	1.680	1.601	12.09	12.09
160						9.963	9.963
170						8.274	8.274
180						6.925	6.925
190						5.837	5.837
200						4.954	4.954
210						4.232	4.232
220						3.636	3.636
230						3.142	3.142
240						2.731	2.731
250						2.385	2.385
$\mathrm{B}_{25 / 85}$	3370K	3435K	3969K	3370K	3435K	3370K	3370K

テーピング寸法図

－FT：10，000個／リール（最少取扱数量）

FT サーミスタの応用
－FTサーミスタはチップ部品としての実装以外にも応用が可能です。ご検討 の取付条件として，リードが必要な場合にはご相談下さい。（ラジアルリー ド又はアキシャルリード）
－FTサーミスタは高い精度で特性のペアをご用意することが可能です。例え ば一方を補償用（基準）とし，もう一方を検知用として差を見たい等，高 いぺア精度が必要な使用方法等をご検討の場合にはご相談下さい。

注意事項

- 実装方法についてはご相談下さい。
- 使用温度範囲を超えた高温域（350゚ㅇまで）でご検討の際はご相談下さい。

超高精度サーミスタ

A．Thermistors

AP サーミスタは，従来の高精度サーミスタの精度をさらに向上させた事により
広範囲にわたる高精度温度検出を可能にしたサーミスタです。

- 超高精度 ： R_{25} 及び $\mathrm{B}_{25 / 85}$ の許容差 $\pm 0.5 \%$
- 広範囲狭偏差 ：$-60^{\circ} \mathrm{C} \sim 70^{\circ} \mathrm{C}$ の範囲で温度許容差士 $0.5^{\circ} \mathrm{C}$

形 名

外形寸法図

（単位：mm）

－用 途

医療機器，OA機器，セキュリティ機器，家電住設機器，インバータ，
ロボット，モ一タ，計測機器，FA機器，パワーコンディショナー，
冷凍ショーケース，バッテリ，モバイル機器，情報通信機器

定 格

形名	$\mathrm{R}_{25}{ }^{* 1}$	R_{25} 許容差	B定数＊2	熱放散定数 $\mathrm{mW} /{ }^{\circ} \mathrm{C}$	熱時定数 ${ }^{* 3}$ s	定格電力 mW at $25^{\circ} \mathrm{C}$	使用温度範囲 ${ }^{\circ} \mathrm{C}$
202AP－2	2．00k Ω	$\pm 0.5 \%$	$3976 \mathrm{~K} \pm 0.5 \%$	約1．2	約 15	6	$-60 \sim+150$
232AP－2	$2.252 \mathrm{k} \Omega$		$3976 \mathrm{~K} \pm 0.5 \%$				
502AP－2	$5.00 \mathrm{k} \Omega$		$3976 \mathrm{~K} \pm 0.5 \%$				
103AP－2	10．0k		$3435 \mathrm{~K} \pm 0.5 \%$				
103AP－2－A	10.0		$3976 \mathrm{~K} \pm 0.5 \%$				
203AP－2	$20.0 \mathrm{k} \Omega$		$3976 \mathrm{~K} \pm 0.5 \%$				
503AP－2	$50.0 \mathrm{k} \Omega$		$4220 \mathrm{~K} \pm 0.5 \%$				
104AP－2	$100 \mathrm{k} \Omega$		$4261 \mathrm{~K} \pm 0.5 \%$				
204AP－2	200k Ω		$4470 \mathrm{~K} \pm 0.5 \%$				

※ $1: 25^{\circ} \mathrm{C}$ におけるゼロ負荷抵抗値 $※ 2: 25^{\circ} \mathrm{C}, ~ 85^{\circ} \mathrm{C}$ におけるゼロ負荷抵抗值より算出 $※ 3: ~$ 静止空気中にて測定

■ 性 能

試験名	条 件	判定基準
はんだ而熱性	（1）：260 ${ }^{\circ} \mathrm{C} 10 \mathrm{~s}$	$\begin{aligned} & \Delta \mathrm{R}, \Delta \mathrm{~B} \pm 0.5 \% \\ & \text { 外観 } \end{aligned}$
	（2）：340 ${ }^{\circ} \mathrm{C} 3.5 \mathrm{~s}$	
はんだ付け性	245º${ }^{\circ} \mathrm{Cs}$（フラックス：ロジンエタノール）	はんだ付着率90\％以上
端子引張り	リード線を開く方向に2N 10s	$\begin{aligned} & \Delta \mathrm{R}, \Delta \mathrm{~B} \pm 0.5 \% \\ & \text { 外観 } \end{aligned}$
端子曲げ		
自然落下	$\mathrm{H}=1 \mathrm{~m}$ 3回（楓板上）	
耐電圧	AC 1000V 1分間	1mA末満
絶縁抵抗	DC 500V	100M 2 以上
高温試験	$150^{\circ} \mathrm{C}$ 1000h	$\Delta \mathrm{R}, \Delta \mathrm{B} \pm 0.5 \%$
高温高湿試験（通電）	$40^{\circ} \mathrm{C}$ 相対湿度 $90 \% \mathrm{RH} 1000 \mathrm{~h}$	
温度サイクル試験	$\begin{aligned} & -60^{\circ} \mathrm{C}(30 \mathrm{~min}) \rightarrow \text { 室温 }(3 \mathrm{~min}) \rightarrow \\ & 150^{\circ} \mathrm{C}(30 \mathrm{~min}) \rightarrow \text { 室温 }(3 \mathrm{~min}) \\ & 100 \text { サイルル } \end{aligned}$	

注意事項

－リード線を曲げる場合は根元から3mm以上離れた位置をラジオペ ンチ等で固定し，リード線側を曲げてください。
－リード線を図1に示す方向に2N以上の力が加わらないようにして ください。

図

はんだ付け時間は，リード線根元から5mm以上離れた位置に，は んだでて（50W），温度 $340^{\circ} \mathrm{C}$ のとき 7 秒以下を目安にしてくだ さい。特にリード線を短くカットしてご使用のときは，ご注意くださ い。

温度 （ $\left.{ }^{\circ} \mathrm{C}\right)$	形 名								
	202AP－2	232AP－2	502AP－2	103AP－2	103AP－2－A	203AP－2	503AP－2	104AP－2	204AP－2
－60	207.1	233.2	560.2	600.6	1202	2497	7940	15510	
－50	102.6	115.5	273.7	326.9	583.4	1211	3729	7339	17830
－40	53.94	60.73	142.2	187.4	301.2	624.9	1868	3702	8750
－30	29.69	33.44	77.18	110.9	162.3	335.8	975.9	1943	4461
－20	17.07	19.22	43.61	67.64	90.85	187.2	528.7	1056	2359
－10	10.16	11.44	25.55	42.39	52.76	108.1	296.7	593.7	1291
0	6.261	7.050	15.46	27.25	31.64	64.39	171.9	344.5	730.6
10	3.922	4.417	9.648	17.95	19.56	39.53	102.8	205.9	426.2
20	2.491	2.804	6.186	12.09	12.43	24.94	63.14	126.4	255.6
25	2.000	2.252	5.000	10.00	10.00	20.00	50.00	100.0	200.0
30	1.615	1.818	4.066	8.314	8.096	16.14	39.83	79.59	157.4
40	1.070	1.205	2.725	5.829	5.394	10.69	25.75	51.32	99.36
50	0.7237	0.8149	1.846	4.162	3.671	7.237	17.01	33.79	64.10
60	0.4994	0.5624	1.270	3.022	2.546	4.998	11.48	22.72	42.26
70	0.3513	0.3956	0.8884	2.229	1.783	3.516	7.905	15.57	28.42
80	0.2515	0.2832	0.6314	1.669	1.265	2.516	5.539	10.86	19.47
85	0.2142	0.2412	0.5355	1.451	1.071	2.142	4.669	9.124	16.23
90	0.1831	0.2062	0.4558	1.266	0.9098	1.830	3.949	7.697	13.57
100	0.1354	0.1525	0.3339	0.9737	0.6635	1.352	2.859	5.540	9.616
110	0.1017	0.1145	0.2480	0.7576	0.4903	1.012	2.098	4.040	6.905
120	0.07730	0.08710	0.1867	0.5961	0.3670	0.7675	1.562	2.989	5.033
130	0.05960	0.06710	0.1422	0.4741	0.2780	0.5889	1.179	2.240	3.719
140	0.04650	0.05230	0.1097	0.3808	0.2130	0.4570	0.8998	1.698	2.782
150	0.03660	0.04130	0.08550	0.3087	0.1650	0.3584	0.6946	1.301	2.105
$\mathrm{B}_{25 / 85}$	3976K	3976K	3976K	3435K	3976K	3976K	4220K	4261K	4470K

温度検出精度の比較グラフ

$-103 \mathrm{AP}-2$（使用温度範囲 ：$-60^{\circ} \mathrm{C} \sim 150^{\circ} \mathrm{C}$ ）
－－－－103AT－2（使用温度範囲 ：$-50^{\circ} \mathrm{C} \sim 110^{\circ} \mathrm{C}$ ）

温度［ $\left.{ }^{\circ} \mathrm{C}\right]$

高精度サーミスタ

AJthedshisios

ATサーミスタは抵抗値及び B 定数の許容差が極めて小さい（土 1 \％）高精度サーミスタです。

- 形状が均一なため，自動実装への対応が可能。
- 経時変化が小さく高信頼性。
- 形状が様々。用途に応じて選べる。

形 名

用 途

電気自動車，ハイブリッド車，OA機器，セキュリティ機器，冷暖房機器，家電住設機器，インバータ，ロボット，計測機器，FA機器，
パワーコンディショナー，農業機器，ファンモータ，冷凍ショーケース， バッテリ，モバイル機器，情報通信機器

外形寸法図

\langle Fig1〉

（単位：mm）

〈Fig2〉

〈Fig3〉

（単位：mm）

〈Fig4〉

（単位：mm）

定 格

形 名	$\mathrm{R}_{25}{ }^{* 1}$	R_{25} 許容差	B定数＊2	熱放散定数 $\mathrm{mW} /{ }^{\circ} \mathrm{C}$	熱時定数 ${ }^{* 3}$ S	定格電力 mW at $25^{\circ} \mathrm{C}$	使用温度範囲 ${ }^{\circ} \mathrm{C}$
102AT－11	$1.00 \mathrm{k} \Omega$	$\pm 1 \%$	$3100 \mathrm{~K} \pm 1 \%$	約2．6	約75	13	$-50 \sim+90$
202AT－11	$2.00 \mathrm{k} \Omega$		$3182 \mathrm{~K} \pm 1 \%$				
502AT－11	$5.00 \mathrm{k} \Omega$		$3324 \mathrm{~K} \pm 1 \%$				
103AT－11	$10.0 \mathrm{k} \Omega$		$3435 \mathrm{~K} \pm 1 \%$				$-50 \sim+105$
203AT－11	$20.0 \mathrm{k} \Omega$		$4013 \mathrm{~K} \pm 1 \%$				
102AT－2	$1.00 \mathrm{k} \Omega$		$3100 \mathrm{~K} \pm 1 \%$	約2．0	約15	10	$-50 \sim+90$
202AT－2	$2.00 \mathrm{k} \Omega$		$3182 \mathrm{~K} \pm 1 \%$				
502AT－2	$5.00 \mathrm{k} \Omega$		$3324 \mathrm{~K} \pm 1 \%$				
103AT－2， 3	$10.0 \mathrm{k} \Omega$		$3435 \mathrm{~K} \pm 1 \%$				$-50 \sim+110$
203AT－2	$20.0 \mathrm{k} \Omega$		4013K $\pm 1 \%$				
103AT－4	$10.0 \mathrm{k} \Omega$		$3435 \mathrm{~K} \pm 1 \%$		約10		$-30 \sim+90$
103AT－5	$10.0 \mathrm{k} \Omega$		$3435 \mathrm{~K} \pm 1 \%$	約2．5	約15	12.5	$-50 \sim+110$

[^0]■ 性 能

試験名	条件		判定基準
はんだ耐熱性	（1）AT－2，3，4	$260^{\circ} \mathrm{C}$ 10s or $350^{\circ} \mathrm{C} 3.5 \mathrm{~s}$	$\Delta \mathrm{R}, ~ \triangle \mathrm{~B} \pm 1 \%$
	（2）AT－5	$260^{\circ} \mathrm{C} 5 \mathrm{~s}$ or $350^{\circ} \mathrm{C} 1.5 \mathrm{~s}$	
はんだ付け性	（1）AT－2，3	：245 ${ }^{\circ} \mathrm{C}$ 2s（フラックス：ロジンエタノール）	はんだ付着率 90\％以上
	（2）AT－4，5	：235％2s（フラックス：ロジンエタノール）	
端子引張り	（1）AT－11	30N 10s	$\begin{aligned} & \Delta \mathrm{R}, \Delta \mathrm{~B} \pm 1 \% \\ & \text { 外観 } \end{aligned}$
	（2AT－2，3	：リード線を開く方向に2N 10s	
	（3）AT－4	：5N 60s	
	（4）AT－5	：リード線を開く方向に2N 3s	
端子曲げ	（1）AT－11	5N 90゚曲げ 10回	
	（2AT－2，3	：90曲げ 1 回	
	（3）AT－4		
	（4）AT－5	：2．5N 90曲げ 2回	
自然落下	（1）AT－1 1，2，3	$\mathrm{H}=1 \mathrm{~m}$ 3回（楓板上）	
	（2）AT－4	$: \mathrm{H}=0.75 \mathrm{~m} 3$ 回（楓板上）	
	（3）AT－5	： $\mathrm{H}=1 \mathrm{~m} 1$ 回（楓板上）	
耐電圧	（1）AT－1 1，2，3，5	：AC 1000V 1分間	$1 \mathrm{mA末}$ 満
	（2）AT－4	：DC 100V 1 秒間	
絶縁抵抗	（1）AT－1 1，2，3，5	：DC 500V	100Mロ以上
	（2）AT－4	：DC 100V	
高温試験	（1）AT－11	： $105^{\circ} \mathrm{C}\left(90^{\circ} \mathrm{C}\right)^{* 4} 1000 \mathrm{~h}$	$\Delta \mathrm{R} . \Delta \mathrm{B} \pm 1 \%$
	（2AT－2，3，5	： $110^{\circ} \mathrm{C}\left(90^{\circ} \mathrm{C}\right)^{* 4} 1000 \mathrm{~h}$	
	（3）AT－4	$90^{\circ} \mathrm{C}$ 1000h	
高温高湿試験 （通電）	（1）AT－11	$70^{\circ} \mathrm{C}$ 相対湿度90\％通電電流DC 1 mA 1000 h	
	（2）AT－2，3，4，5	$\begin{aligned} & : 40^{\circ} \mathrm{C} \text { 相対湿度 } 90 \% \\ & \text { 通電電流DC } 1 \mathrm{~mA} 1000 \mathrm{~h} \\ & \hline \end{aligned}$	
温度サイクル 試験	（1）AT－1 1	$\begin{aligned} & -55^{\circ} \mathrm{C}(30 \mathrm{~min}) \rightarrow \text { 常温 }(3 \mathrm{~min}) \rightarrow 85^{\circ} \mathrm{C}(30 \mathrm{~min}) \\ & \rightarrow \text { 常温(3min) } 100 \text { サイクル } \end{aligned}$	
	（2）AT－2，3	$\begin{aligned} & -30^{\circ} \mathrm{C}(30 \mathrm{~min}) \rightarrow \text { 室温 }(3 \mathrm{~min}) \rightarrow 90^{\circ} \mathrm{C}(30 \mathrm{~min}) \\ & \rightarrow \text { 室温 }(3 \mathrm{~min}) 100 \text { サイクル } \end{aligned}$	
	（3）AT－4	```: -20\circ ->常温(1min) 100サイクル```	
	（4）AT－5	$\begin{aligned} & -30^{\circ} \mathrm{C}(5 \mathrm{~min}) \rightarrow \text { 常淐 }(3 \mathrm{~min}) \rightarrow 90^{\circ} \mathrm{C}(5 \mathrm{~min}) \\ & \rightarrow \text { 常温 }(3 \mathrm{~min}) 100 \text { サイクル } \\ & \hline \end{aligned}$	

※4：（ ）內は102AT－11，202AT－11，102AT－2，202AT－2の条件

注意事項

AT－2．3．5
－リード線を曲げる場合は根元から3mm以上離れた位置をラジ オペンチ等で固定し，リード線側を曲げてください。
－リード線を図1に示す方向に2N以上の力が加わらないように してください。目安として図2の荷重時の変移 $\pm 0.3 \mathrm{~mm}$ 以内 としてください。

図1

図2
－はんだ付け時間は，リード線根元から5mm（8．5mm）以上離 れた位置に，はんだごて：50W，温度340으（350으）のとき7秒（2秒）以下を目安にしてください。特にリード線を短くカット してご使用のときは，ご注意ください。
（ ）内はAT－5の数値です。

抵抗一温度特性

温度 $\left({ }^{\circ} \mathrm{C}\right)$	形名				
	102 AT	202AT	502AT	103 AT	203AT
-50	26.24	55.66	154.6	329.5	1253
-40	15.31	32.34	88.91	188.5	642.0
-30	9.281	19.48	52.87	111.3	342.5
-20	5.828	12.11	32.44	67.77	190.0
-10	3.766	7.763	20.48	42.47	109.1
0	2.501	5.114	13.29	27.28	64.88
10	1.705	3.454	8.840	17.96	39.71
20	1.188	2.387	6.013	12.09	24.96
25	1.000	2.000	5.000	10.00	20.00
30	0.8457	1.684	4.179	8.313	16.12
40	0.6134	1.211	2.961	5.827	10.65
50	0.4523	0.8854	2.137	4.160	7.181
60	0.3390	0.6587	1.567	3.020	4.943
70	0.2578	0.4975	1.168	2.228	3.464
80	0.1986	0.3807	0.8835	1.668	2.468
85	0.1752	0.3346	0.7722	1.451	2.096
90	0.1550	0.2949	0.6771	1.266	1.788
100			0.5265	0.9731	1.315
110			0.4128	0.7576	0.9807
$\mathrm{~B}_{25 / 85}$	3100 K	3182 K	3324 K	3435 K	4013 K

テーピング寸法図

高感度サーミスタ

ETサーミスタは小型で高感度なサーミスタです。

- 抵抗値，B 定数の許容差が小さく，高精度。
- 形状が均一なため，自動実装への対応が可能。
- 経時変化が小さく高信頼性です。

\square 形 名

用 途

医療幾器，ウェアラブル機器，電子体温計，車載電装機器，電気自動車， ハイブリッド車，火災感知器，家電住設機器，ロボット，計測機器，
FA機器，バッテリ，モバイル機器，情報通信機器

定 格

形名	$\mathrm{R}_{25}{ }^{\text {＊／}}$	R_{25} 許容差	B定数＊2	使用温度範囲 ${ }^{\circ} \mathrm{C}$
212 ET	$2.10 \mathrm{k} \Omega$	$\pm 3 \%$	$3850 \mathrm{~K} \pm 1 \%$	$-40 \sim+90$
402ET	$4.00 \mathrm{k} \Omega$		3100K士1\％	
582ET	$5.80 \mathrm{k} \Omega$		$3614 \mathrm{~K} \pm 1 \%$	
103ET	10．0k Ω		$3250 \mathrm{~K} \pm 1 \%$	
203ET	20.0 k ，		$3450 \mathrm{~K} \pm 1 \%$	－40～＋100
303ET	30．0k		3760K $\pm 1 \%$	
403ET	40．0k		3525K $\pm 1 \%$	
503ET	50．0k』		4055K土1\％	
833ET	83．0k』		4013K土1\％	
104ET	100k』		$4132 \mathrm{~K} \pm 1 \%$	$-40 \sim+90$
224ET	226k』		$4021 \mathrm{~K} \pm 1 \%$	$-40 \sim+100$
234ET	232k』		$4274 \mathrm{~K} \pm 1 \%$	
103ETB	10．0k Ω	$\pm 1 \%$ ．$\pm 2 \%$	$3435 \mathrm{~K} \pm 1 \%$	$-40 \sim+90$

- 熱放散定数： u 約 $0.7 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$－熱時定数：約 3.4 s （約3．2s）＊3．＊4
- 定格電力： 3.5 mW at $25^{\circ} \mathrm{C}$
※ $1: 25^{\circ} \mathrm{C}$ におけるゼロ負荷抵抗値 ※2： $25^{\circ} \mathrm{C}, ~ 85^{\circ} \mathrm{C}$ におけるゼロ負荷抵抗値より算出
※3：静止空気中にて測定 ※4：（ ）内はET－1の値

\section*{| 形名 | $R_{37}{ }^{* 5}$ | R_{37} 許容差 | B定数＊6 | 使用温度筺囲 ${ }^{\circ} \mathrm{C}$ |
| :---: | :---: | :---: | :---: | :---: |
| $503 E T-3 H$ | 29.937 KO | $\pm 1.08 \%$ | $3944 \mathrm{~K} \pm 0.5 \%$ | $-40 \sim+100$ |}

- 熱放散定数：綾時定数：約 $0.8 s^{* 7}$
- 定格電力： 3.5 mW at $25^{\circ} \mathrm{C}$
※5：37${ }^{\circ} \mathrm{C}$ におけるゼロ負荷抵抗値 $※ 6: 30^{\circ} \mathrm{C}, ~ 45^{\circ} \mathrm{C}$ におけるゼロ負荷抵抗値より算出
※5：37゚Cにおけるゼロ
※7：オイル中にて測定

抵抗一温度特性

外形寸法図

性 能

試験名	条件	判定基準
はんだ而熱性	$260^{\circ} \mathrm{C}$ 10s	$\Delta \mathrm{R}, \mathrm{\Delta B} \pm 1 \%$
はんだ付け性	$245^{\circ} \mathrm{C}$ 2s（フラックス：ロジンエタノール）	はんだ付着率90\％以上
端子引張り	1 N 10 s	$\Delta \mathrm{R}, ~ \triangle \mathrm{~B}+1 \%$ ，外観
自然落下	$\mathrm{H}=1 \mathrm{~m} 3$ 回（榣板上）	$\Delta \mathrm{R}, \Delta \mathrm{B} \pm 1 \%$ ，外観
絶縁抵抗	DC 100V	100Mの以上
高温試験	$100^{\circ} \mathrm{C}\left(90^{\circ} \mathrm{C}\right)^{* 8} 1000 \mathrm{~h}$	
$\begin{aligned} & \begin{array}{l} \text { 高温高湿試験 } \\ \text { (通電) } \end{array} \\ & \hline \end{aligned}$	$40^{\circ} \mathrm{C}$ 相対湿度 90%通電電流DC0．1mA 1000h	
（温度サイクル試験	$-20^{\circ} \mathrm{C}$（ 5 min ）\rightarrow 常温（3min） $\rightarrow 100^{\circ} \mathrm{C}\left(80^{\circ} \mathrm{C}\right)^{* 8}(5 \mathrm{~min})$ \rightarrow 常温（3min）100サイクル	$\Delta \mathrm{R}, \Delta \mathrm{B} \pm 1 \%(\pm 2 \%)^{* 9}$

※8：（ ）内は212ET～103ET，104ET及び103ETBの試験温度条件
：（ ）内は212ET～103ET，104ET及び103ETBの変化率

注意事項

- リード線を開く方向にO．3N以上の力が加わらないようにして下さい。
- リード線を図1の方向に1N以上の力で押しつけないで下さい。

図1 勧
－はんだ付け時間はリード線根元から5mm以上離れた位置に，はんだごて （50W），温度3400の時7秒以下を目安にして下さい。

温度	形名													
（ ${ }^{\text {C）}}$	212ET	402ET	582ET	103ET	203ET	303ET	403ET	503ET	833ET	104ET	224ET	234ET	103ETB	503ET－3H
－40	64.02	57.71	127.7	170.9	402.2	810.7	833． 3	1602	2664	3325	7005	9046	204． 7	1588
－30	35.13	35.34	72.10	102.2	233.6	445.1	481.1	855.0	1421	1769	3784	4680	118.5	848.1
－20	19.65	22.38	42.37	63.07	140.2	253.7	287.5	474.4	788.5	977.5	2116	2515	71.02	470.9
－10	11.31	14.60	25.84	40.08	86.82	149.8	177.2	272.7	453.0	559.0	1225	1401	43.67	270.4
0	6.724	9.797	16.29	26.16	55.31	91.30	112.4	161.9	269.3	329.8	730.1	808.2	27.70	160.9
10	4.130	6.737	10.57	17.51	36.16	57.31	73.00	99.13	164.8	200.5	447.8	480.2	18.07	98.63
20	2.612	4.736	7.039	11.99	24.23	37.00	48.61	62.38	103.6	125.3	282.1	293.7	12.11	62.12
25	2.100	4.000	5.800	10.00	20.00	30.00	40.00	50.00	83.00	100.0	226.0	232.0	10.00	49.77
30	1.699	3.394	4.806	8.387	16.60	24.47	33.08	40.24	66.91	80.27	182.1	184.4	8.301	40.10
40	1.134	2.476	3.353	5.988	11.61	16.56	22.96	26.58	44.18	52.62	120.3	118.6	5.811	$29.937^{* 5}$
50	0.7753	1.835	2.369	4.353	8.279	11.45	16.26	17.93	29.80	35.23	81.07	78.00	4.147	21．72＊10
60	0.5420	1.378	1.685	3.217	6.005	8.070	11.70	12.33	20.51	24.00	55.75	52.39	3.011	12.20
70	0.3867	1.049	1.214	2.414	4.425	5.791	8.569	8.588	14.37	16.59	39.01	35.87	2.224	8.449
80	0.2811	0.7997	0.8863	1.836	3.310	4.222	6.367	6.064	10.24	11.64	27.78	24.99	1.668	5.940
85	0.2413	0.7005	0.7610	1.610	2.877	3.626	5.517	5.120	8.700	9.807	23.58	21.00	1.451	5.009
90	0.2079	0.6145	0.6557	1.416	2.509	3.125	4.797	4.338	7.419	8.287	20.10	17.72	1.267	4.240
100					1.926	2.346	3.662	3.142	5.459		14.75	12.75		3.070
$\mathrm{B}_{25 / 85}$	3850K	3100 K	3614 K	3250K	3450K	3760K	3525K	4055K	4013K	4132K	4021K	4274K	3435K	$3944{ }^{* 6}$

[^1]
Jithernistos

JTサーミスタは最大の厚さが $500 \mu \mathrm{~m}$ を実現した薄型の温度センサです。
電気絶縁性も優れており，電極に接触し易い場所にも安心してご利用頂けます。

形 名

高精度，薄型サーミスタ
ゼロ負荷抵抗値（at $25^{\circ} \mathrm{C}$ ）
例） $103: 10 \times 10^{3} \Omega$

用 途

ウェアラブル機器，液晶パネル，火災感知器，インバータ，ロボット，計測機器，ファンモ一タ，バッテリ，モバイル機器，情報通信機器，表面温度センサ

外形寸法図

〈Fig2〉

定 格

形名	$\mathrm{R}_{25}{ }^{* 1}$	許容差	B 定数＊2	熱放散定数 $\mathrm{mW} /{ }^{\circ} \mathrm{C}$	熱時定数 $\mathrm{s}^{* 3}$	定格電力 mW at $25^{\circ} \mathrm{C}$	使用温度範囲 ${ }^{\circ} \mathrm{C}$
103JT	$10.0 \mathrm{k} \Omega$	$\pm 1 \%$	$3435 \mathrm{~K} \pm 1 \%$	約 0.7	約5	3.5	$-50 \sim+125$
104JT	$100 \mathrm{k} \Omega$		$4390 \mathrm{~K} \pm 1 \%$				

※1： $25^{\circ} \mathrm{C}$ におけるゼロ負荷抵抗値 \quad 2 $: 25^{\circ} \mathrm{C}, ~ 85^{\circ} \mathrm{C}$ におけるゼロ負荷抵抗値より算出 ※3：静止空気中にて測定

－性 能

試験名	条件	判定基準
はんだ耐熱性	$260^{\circ} \mathrm{C}$ 5s	$\Delta \mathrm{R}, \mathrm{B} \mathrm{B} \pm 1 \%$
はんだ付け性	$\begin{aligned} & \text { 245ºㅇ 2s } \\ & \text { (フラックス:ロジンエタノール) } \end{aligned}$	はんだ付着率90\％以上
端子引張り	1N 10s	$\begin{aligned} & \Delta \mathrm{R}, \Delta \mathrm{~B} \pm 1 \% \\ & \text { 外観 } \end{aligned}$
端子曲げ	2．5N 90曲げ 各1回	
自然落下	$\mathrm{H}=0.75 \mathrm{~m} 3$ 回（楓板上）	
耐電圧	AC 100V 1分間	1mA末満
絶縁抵抗	DC 100V	100M 2 以上
高温試験	$125^{\circ} \mathrm{C}$ 1000h	$\Delta \mathrm{R}, \Delta \mathrm{B} \pm 1 \%$
高温高湿試験 （通電）	$40^{\circ} \mathrm{C}$ ，相対湿度 90% DC 1 mA 1000h	
温度サイクル試験	$\begin{aligned} & -25^{\circ} \mathrm{C}(30 \mathrm{~min}) \rightarrow \text { 室温 }(3 \mathrm{~min}) \rightarrow \\ & 125^{\circ} \mathrm{C} \text { (30min) } \rightarrow \text { 室温 }(3 \mathrm{~min}) \\ & 100 \text { サクルル } \\ & \hline \end{aligned}$	

－注意事項

－押付け，押しあて，締付け，挿入などによって取り付けるときは，ご相談下さ い。
－はんだ付けの際は，150゚C以上の高温部がフィルム部に接触しますとフィル ムが溶ける事があります。
－リード線の折り曲げの際は，サーミスタ素子部から3mm以上のところでサー ミスタ素子部に外力が加わらないように固定し，7mm以上のところでリード線を折り曲げて下さい。

抵抗一温度特性

温度 $\left.{ }^{\circ} \mathrm{C}\right)$	形	
	名	
-50	367.7	103 JT
-40	204.7	9584
-30	118.5	4572
-20	71.02	2282
-10	43.67	1191
0	27.70	647.2
10	18.07	365.0
20	12.11	212.5
25	10.00	127.7
30	8.301	100.0
40	5.811	78.88
50	4.147	50.03
60	3.011	32.51
70	2.224	21.61
80	1.668	14.66
85	1.451	10.13
90	1.267	8.483
100	0.9753	7.135
110	0.7597	5.111
120	0.5981	3.720
125	0.5331	2.746
$\mathrm{~B}_{25 / 85}$	3435 K	2.371
		4390 K

単位：$k \Omega$

高精度 SMD 角チップサーミスタ

 IstothermistosKTサーミスタは，高精度サーミスタの基本特性（抵抗値許容差士 1 \％，B 定数許容差士 1 \％）を EIAJ規格（1005，1608サイズ）に実現した高性能高信頼性チップサーミスタです。

形 名

用 途

$O A$ 機器，$A V$ 機器，液晶パネル，セキュリティ機器，インバータ，ロボット， FA機器，バッテリ，モバイル機器，情報通信機器

外形寸法図

サイズ	L	W	T	L_{1}
1005	1.00 ± 0.15	0.50 ± 0.10	$0.6 \max$.	$0.15 \sim 0.30$
1608	1.60 ± 0.15	0.80 ± 0.15	$0.95 \max$.	$0.20 \sim 0.50$

（単位：mm）

定 格

形 名	$\mathrm{R}_{25}{ }^{* 1}$	R_{25} 許容差	B定数＊2	熱放散定数 $\mathrm{mW} /{ }^{\circ} \mathrm{C}$	熱時定数 $\mathrm{s}^{* 3}$	定格電力 mW at $25^{\circ} \mathrm{C}$	使用温度範囲 ${ }^{\circ} \mathrm{C}$
103KT1608T	$10 \mathrm{k} \Omega$	$\begin{aligned} & \pm 1 \% \\ & \pm 2 \% \\ & \pm 3 \% \end{aligned}$	$3435 \mathrm{~K} \pm 1 \%$	約0．9	約5	4.5	$-40 \sim+125$
503KT1608T	50k		$4055 \mathrm{~K} \pm 1 \%$				
104KT1608T	100k Ω		$4390 \mathrm{~K} \pm 1 \%$				
103KT1005T	$10 \mathrm{k} \Omega$		$3435 \mathrm{~K} \pm 1 \%$	約0．7	約2．2	3.5	

※ 1： $25^{\circ} \mathrm{C}$ におけるゼロ負荷抵抗値 ※2： $25^{\circ} \mathrm{C}, ~ 85^{\circ} \mathrm{C}$ におけるゼロ負荷抵抗値より算出 ※3：静止空気中にて測定

－性 能

試験名	条 件	判定基準
はんだ而熱性	260º 10s（フローソルダリング）	$\Delta \mathrm{R}, ~ \triangle \mathrm{~B} \pm 3 \%$
はんだ付け性	$235^{\circ} \mathrm{C}$ 5s（フラックス：ロジンエタノール）	はんだ付着率75\％以上
固着性試験	実装後に基板と水平方向 静荷重5N 10s	
耐プリント板曲げ性試験	実装後に裏側から垂直方向にたわみ量2mm 5s	$\Delta R, \Delta B \pm 3 \%$ 外観
素体強度試験	両端を支持し垂直方向 静荷重10N 10s	
高温試験	$125^{\circ} \mathrm{C} 1000 \mathrm{~h}$	
高温高湿試験	$40^{\circ} \mathrm{C}$ 相対湿度90\％1000h	
温度サイクル試験	$\begin{aligned} & -25^{\circ} \mathrm{C}(30 \mathrm{~min}) \rightarrow \text { 室温 }(15 \mathrm{~min}) \rightarrow \\ & 100^{\circ} \mathrm{C}(30 \mathrm{~min}) \rightarrow \text { 室温 }(15 \mathrm{~min}) \\ & \text { 空気中 } 50 \text { サイクル } \end{aligned}$	$\Delta \mathrm{R}, \Delta \mathrm{B} \pm 3 \%$

注意事項

－はんだ付けの前後を通じ，基板にそりやねじれが生じないよ うにして下さい。
－ランドの大きさは左右均等になるようにして下さい。

フローはんだ付け 推奨温度プロファイル

時間（s）

推浩ランド

サイズ	A	B	C	D
1005	0.6	0.5	0.6	0.6
1608	1.0	1.0	1.0	1.2

（単位：mm）

抵抗一温度特性

温度 $\left({ }^{\circ} \mathrm{C}\right)$	形			
	103KT1608T	503KT1608T	104KT1608T	103KT1005T
－40	221.9	1920	5218	223.9
－30	125.1	981.8	2530	126.1
－20	73.38	525.2	1285	73.87
－10	44.72	293.3	682.0	44.91
0	28.16	169.7	376.8	28.22
10	18.25	101.7	216.1	18.27
20	12.14	62.90	128.3	12.15
25	10.00	50.00	100.0	10.00
30	8.283	40.05	78.55	8.282
40	5.781	26.20	49.56	5.778
50	4.120	17.56	32.13	4.119
60	2.996	12.04	21.36	2.992
70	2.214	8.431	14.53	2.212
80	1.665	6.021	10.10	1.664
85	1.451	5.122	8.487	1.451
90	1.271	4.376	7.164	1.271
100	0.9832	3.237	5.176	0.9840
110	0.7707	2.433	3.803	0.7710
120	0.6114	1.855	2.839	0.6115
125	0.5469	1.627	2.466	0.5470
$\mathrm{B}_{25 / 85}$	3435K	4055K	4390K	3435K

テーピング寸法図

```
－1608サイズ 4000個／リール（最少取扱数量）
```

－1005サイズ 10000個ノリール（最少取扱数量）

HTサーミスタはリフローハンダを可能にした，高精度面実装サーミスタです。
従来のチップサーミスタと比べ大幅に信頼性が向上しました。

形 名

```
103 HT \(\square-\square \square-\underline{T P}\)
HTFのみ
TP ：テーピング
無し：バラ品袋詰め
R25許容差 1P ：\(\pm 1 \%\) 品
無し：\(\pm 2 \%\) 品
高精度，面実装サーミスタ
HT ：Fig1
HTF：Fig2
ゼロ負荷抵抗値（at \(25^{\circ} \mathrm{C}\) ）
例） \(103: 10 \times 10^{3} \Omega\)
```


用 途

電気自動車，$O A$ 機器，$A V$ 機器，液晶パネル，セキュリティ機器，
インバータ，ロボット，FA機器，バッテリ，モバイル機器，情報通信機器

外形寸法図

〈Fig1〉

（単位：mm）

定 格

形名	$\mathrm{R}_{25}{ }^{\text {＊1 }}$	R_{25} 許容差	B定数＊2	熱放散定数 $\mathrm{mW} /{ }^{\circ} \mathrm{C}$	熱時定数 $\mathrm{s}^{* 3}$	定格電力 mW at $25^{\circ} \mathrm{C}$	使用温度範囲 ${ }^{\circ} \mathrm{C}$
302HT	$3.00 \mathrm{k} \Omega$	$\begin{aligned} & \pm 1 \% \\ & \pm 2 \% \end{aligned}$	3860K $\pm 1 \%$	約1．0	約8	5.0	
502HT	$5.00 \mathrm{k} \Omega$		3860K $\pm 1 \%$				50～＋125
$103 \mathrm{HT} \cdot \mathrm{HTF}$	10．0k Ω		$3435 \mathrm{~K} \pm 1 \%$				$-50 \sim+100$
203HT	20．0k		$3760 \mathrm{~K} \pm 1 \%$				
303HT	30．0k		3760K $\pm 1 \%$				
$503 \mathrm{HT} \cdot \mathrm{HTF}$	$50.0 \mathrm{k} \Omega$		4055K $\pm 1 \%$				$-50 \sim+125$
104HT•HTF	100k Ω		$4390 \mathrm{~K} \pm 1 \%$				

※ $1: 25^{\circ} \mathrm{C}$ におけるゼロ負荷抵抗値 $※ 2: 25^{\circ} \mathrm{C}, ~ 85^{\circ} \mathrm{C}$ におけるゼロ負荷抵抗值より算出 ※3：静止空気中にて測定

■ 性 能

試験名	条 件	判定基準
はんだ而熱性	（1）260º $10 s$（フローソルダリング）	$\Delta \mathrm{R} \pm 2 \%$ ，$\Delta \mathrm{B} \pm 1 \%$
	（2）予熱： $150^{\circ} \mathrm{C} 90 \mathrm{~s}$ ，リフロー ： $240^{\circ} \mathrm{C} 30 \mathrm{~s}$	
はんだ付け性	$245^{\circ} \mathrm{C}$ 5s（フラックス：ロジンエタノール）	はんだ付着率95\％以上
耐震性	JIS C－2571 C－2570に準拠	$\Delta R \pm 2 \%, ~ \Delta B \pm 1 \%$
自然落下	$\mathrm{H}=1 \mathrm{~m}$ 3回（楓板上）	
耐電圧	AC100V 1分間	1mA未満
絶縁抵抗	DC100V	100M2以上
高温試験	$125^{\circ} \mathrm{C}\left(100^{\circ} \mathrm{C}\right)^{* 4} 1000 \mathrm{~h}$	$\Delta \mathrm{R} \pm 2 \%, \Delta \mathrm{~B} \pm 1 \%$
高温高湿試験（通電）	$70^{\circ} \mathrm{C}$ 相対湿度 90%通電電流DC 1 mA 1000 h	
温度サイクル試験	$\begin{aligned} & -25^{\circ} \mathrm{C}(30 \mathrm{~min}) \rightarrow \text { 室温 }(3 \mathrm{~min}) \rightarrow \\ & 100^{\circ} \mathrm{C}(30 \mathrm{~min}) \\ & \text { 空気中 } 50 \text { サイクル } \\ & \hline \end{aligned}$	

[^2]抵抗一温度特性

温度（ ${ }^{\circ} \mathrm{C}$ ）	形 名						
	302HT	502HT	103HT•HTF	203HT	303HT	503HT•HTF	104HT•HTF
－50	182.1	303.4	367.7	1026	1539	3135	9584
－40	93.35	155.6	204.7	540.5	810.8	1602	4572
－30	49.85	83.09	118.5	296.7	445.1	855.0	2282
－20	27.75	46.25	71.02	169.2	253.8	474.4	1191
－10	16.02	26.70	43.67	99.85	149.8	272.7	647.2
0	9.541	15.90	27.70	60.87	91.31	161.9	365.0
10	5.876	9.793	18.07	38.21	57.32	99.13	212.5
20	3.728	6.214	12.11	24.66	36.99	62.38	127.7
25	3.000	5.000	10.00	20.00	30.00	50.00	100.0
30	2.431	4.051	8.301	16.31	24.47	40.24	78.88
40	1.623	2.705	5.811	11.04	16.56	26.58	50.03
50	1.109	1.849	4.147	7.632	11.45	17.93	32.51
60	0.7744	1.291	3.011	5.380	8.070	12.33	21.61
70	0.5513	0.9189	2.224	3.861	5.792	8.588	14.66
80	0.4000	0.6667	1.668	2.815	4.223	6.064	10.13
85	0.3429	0.5715	1.451	2.417	3.626	5.120	8.483
90	0.2951	0.4918	1.267	2.083	3.125	4.338	7.135
100	0.2210	0.3683	0.9753	1.564	2.346	3.142	5.111
110	0.1680	0.2800		1.190	1.785	2.302	3.720
120	0.1295	0.2158		0.9159	1.374	1.705	2.746
125	0.1142	0.1903		0.8067	1.210	1.472	2.371
$\mathrm{B}_{2 \text { 2／85 }}$	3860K	3860K	3435K	3760K	3760K	4055K	4390K

フローはんだ付け 推奨温度プロファイル

時間（s）

テーピング寸法図

－HT：3000個／リール（最少取扱数量）

注意事項

－端子を折り曲げる場合は1往復（ 90° ）以内にしてください。また，端子 に2N以上の力を加えないでください。

高耐熱高感度サーミスタ

NTサーミスタは，高耐熱，高感度のガラス封止タイプのサーミスタです。従来のガラス封止タイプに比べ小型，応答性に優れ，自動化生産による安定性から，非常に高い信頼性を備えた商品となつており，様々な用途に幅広くで利用頂けます。

形 名

外形寸法図

用 途

医療機器，車載電装機器，ハイブリッド車，エアコン，温水洗浄便座，給湯器， セキュリティ機器， 1 H 調理器，電子レンジ，冷蔵庫，家電住設機器，
インバータ，ロボット，モータ，パワーコンディショナー

定 格

形名	ゼロ負荷抵抗値			B定数＊＊		$\begin{gathered} \text { 使用温度範囲 } \\ { }^{\circ} \mathrm{C} \end{gathered}$
			許容差			
502NT－4－R025H39G	$25^{\circ} \mathrm{C}$	$5 \mathrm{k} \Omega$	$\pm 3 \%$	25／85	$3964 \mathrm{~K} \pm 2 \%$	$-50 \sim+300$
852NT－4－R050H34G	$50^{\circ} \mathrm{C}$	$3.485 \mathrm{k} \Omega$		0／100	$3450 \mathrm{~K} \pm 2 \%$	
103NT－4－R025H34G	$25^{\circ} \mathrm{C}$	10 k ת		25／85	$3435 K \pm 2 \%$	
103NT－4－R025H41G	$25^{\circ} \mathrm{C}$	10k』		25／85	$4126 \mathrm{~K} \pm 2 \%$	
203NT－4－R025H42G	$25^{\circ} \mathrm{C}$	20k』		25／85	$4282 \mathrm{~K} \pm 2 \%$	
493NT－4－R100H4OG	$100^{\circ} \mathrm{C}$	$3.3 \mathrm{k} \Omega$		0／100	3970K $\pm 2 \%$	
503NT－4－R025H42G	$25^{\circ} \mathrm{C}$	$50 \mathrm{k} \Omega$		25／85	$4288 \mathrm{~K} \pm 2 \%$	
104NT－4－R025H42G	$25^{\circ} \mathrm{C}$	100k Ω		25／85	$4267 \mathrm{~K} \pm 2 \%$	
104NT－4－R025H43G	$25^{\circ} \mathrm{C}$	$100 \mathrm{k} \Omega$		25／85	$4390 \mathrm{~K} \pm 2 \%$	
204NT－4－R025H43G	$25^{\circ} \mathrm{C}$	200k Ω		25／85	$4338 \mathrm{~K} \pm 2 \%$	
234NT－4－R200H42G	$200^{\circ} \mathrm{C}$	$1 \mathrm{k} \Omega$		100／200	$4537 \mathrm{~K} \pm 2 \%$	
504NT－4－R025H45G	$25^{\circ} \mathrm{C}$	$500 \mathrm{k} \Omega$		25／85	$4526 \mathrm{~K} \pm 2 \%$	
105NT－4－R025H46G	$25^{\circ} \mathrm{C}$	$1000 \mathrm{k} \Omega$		25／85	$4608 \mathrm{~K} \pm 2 \%$	

- 熱放散定数：約 $0.8 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$－熱時定数：約 6 s ＊2 ${ }^{* 2}$ 定格電力： 4.0 mW at $25^{\circ} \mathrm{C}$
- 上記以外の許容差につきましてもお問い合わせ下さい。
※ 1 ：ゼロ負荷抵抗值より算出 ※2：静止空気中にて測定

抵抗—温度特性

$\begin{array}{\|l} \hline \text { 温度 } \\ \left({ }^{\circ} \mathrm{C}\right) \\ \hline \end{array}$	$\begin{gathered} \hline \text { 502NT-4 } \\ \text {-R025H39G } \\ \hline \end{gathered}$	$\begin{gathered} \hline 852 \mathrm{NT}-4 \\ -\mathrm{RO} 0 \mathrm{H} 34 \mathrm{G} \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { 103NT-4 } \\ - \text { R025H34G } \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { 103NT-4 } \\ - \text { R025H41G } \\ \hline \end{gathered}$	$\begin{array}{\|c\|c\|c\|c\|c\|} \hline \text { 203NT-4 } \\ - \text { R025H42G } \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \text { 493NT-4 } \\ \text {-R100H40G } \\ \hline \end{array}$	$\begin{gathered} \hline \text { 503NT-4 } \\ -\mathrm{RO} 025 \mathrm{H} 42 \mathrm{G} \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline \text { 104NT-4 } \\ \text {-R025H42G } \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \text { 104NT-4 } \\ \text {-R025H43G } \\ \hline \end{array}$	$\begin{gathered} \hline \text { 204NT-4 } \\ \text {-R025H43G } \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline \text { 234NT-4 } \\ \text {-R200H42G } \\ \hline \end{array}$	$\begin{gathered} \hline 504 \mathrm{NT}-4 \\ -\mathrm{RO} 025 \mathrm{H} 45 \mathrm{G} \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { 105NT-4 } \\ -\mathrm{RO} 02 \mathrm{H} 46 \mathrm{G} \\ \hline \end{gathered}$
－50	339.5	346.8	394.7	830.9	1931	3376	3576	8887	10090	19040	17900	52600	110900
－30	92.34	106.1	122.0	207.7	459.2	885.4	965.0	2156	2353	4524.0	4633.0	12290	25610
－10	28.48	38.02	44.09	60.87	129.3	275.5	302.8	623.2	657.0	1284.0	1393.0	3396	6979
0	16.64	23.92	27.86	34.85	72.67	162.2	175.2	354.6	368.1	724.5	804.8	1887	3849
10	10.06	15.49	18.13	20.65	42.33	98.65	104.0	208.8	213.5	423.0	479.2	1084	2195
25	5.000	8.487	10.00	10.00	20.00	49.41	50.00	100.0	100.0	200.0	232.1	500.0	1000
40	2.649	4.899	5.806	5.166	10.10	26.23	25.42	50.90	49.90	100.6	119.0	245.2	484.7
50	1.790	3.485	4.144	3.437	6.613	17.70	16.69	33.45	32.42	65.72	78.46	157.3	308.4
60	1.238	2.524	3.011	2.341	4.440	12.20	11.19	22.48	21.54	43.89	52.84	103.1	200.7
80	0.6306	1.391	1.668	1.159	2.138	6.134	5.343	10.80	10.13	20.81	25.39	47.24	90.54
85	0.3591	1.209	1.451	0.9843	1.803	5.222	4.494	9.094	8.486	17.48	21.38	39.31	75.08
100	0.3455	0.8104	0.9754	0.6189	1.112	3.300	2.741	5.569	5.122	10.61	13.06	23.27	43.96
120	0.2014	0.4952	0.5920	0.3525	0.6175	1.882	1.498	3.058	2.763	5.759	7.130	12.23	22.78
140	0.1238	0.3108	0.3679	0.2121	0.3631	1.127	0.8635	1.770	1.574	3.301	4.098	6.787	12.48
160	0.07968	0.2000	0.2365	0.1339	0.2245	0.7057	0.5225	1.074	0.9414	1.985	2.466	3.957	7.188
180	0.05341	0.1325	0.1568	0.08811	0.1448	0.4592	0.3296	0.6793	0.5873	1.244	1.544	2.406	4.322
200	0.03708	0.09036	0.1068	0.06015	0.09698	0.3092	0.2158	0.4452	0.3804	0.8098	1.000	1.519	2.703
220	0.02656	0.06329	0.07467	0.04239	0.06713	0.2145	0.1459	0.3016	0.2549	0.5442	0.6674	0.9937	1.750
240	0.01956	0.04543	0.05345	0.03072	0.04784	0.1529	0.1016	0.2104	0.1760	0.3765	0.4574	0.6712	1.168
260	0.01477	0.03337	0.03907	0.02285	0.03499	0.1117	0.07261	0.1507	0.1250	0.2676	0.3210	0.4663	0.8019
280	0.01141	0.02506	0.02912	0.01743	0.02619	0.08336	0.05319	0.1105	0.09101	0.1950	0.2302	0.3317	0.5651
300	0.00900	0.01919	0.02209	0.01361	0.02003	0.06345	0.03981	0.08278	0.06772	0.1452	0.1683	0.2410	0.4074

リード線をはんだで接続するときは，ガラス封止部端から5mm以上離れた位置ではんだして下さい。
－リード線を加工するときは，ガラス封止部端から5mm以上離れた位置を固定して行って下さい。

CTサーミスタはガラス封止を採用し，信頼性の優れた，高耐熱アキシャルサーミスタです。
－テーピング対応可能。

形 名

```
103 CT-\square\square\square\square\square
    外形種別
    高耐熱サーミスタ
    ゼロ負荷抵抗値(at 25 C
    例) 103:10\times103\Omega
```


用 途

エアコン，給湯器，1H調理器，冷蔵庫，冷暖房幾器，家電住設機器，
ロボット，パワーコンディショナー，泠涷ショーケース
定格

形名	ゼロ負荷抵抗値			B定数＊${ }^{\text {\％}}$	$\underset{\text { 使用温度範囲 }}{ }$	リード線
		抗値	許容差			
252CT－4	$25^{\circ} \mathrm{C}$	$2.5 \mathrm{k} \Omega$	$\pm 5 \%$	$3670 \mathrm{~K} \pm 2 \%$	$-50 \sim+250$	$\begin{gathered} \text { ニッケル } \\ \text { めっき } \end{gathered}$
512CT－4		$5.1 \mathrm{k} \Omega$		3200K $\pm 2 \%$		
562CT－4		$5.6 \mathrm{k} \Omega$		$3200 \mathrm{~K} \pm 2 \%$	$-50 \sim+200$	
912CT－4		$9.1 \mathrm{k} \Omega$		3270K $\pm 2 \%$	$-50 \sim+250$	
103CT－4		$10 \mathrm{k} \Omega$		$3270 \mathrm{~K} \pm 2 \%$		
113CT－4		$11 \mathrm{k} \Omega$		$3270 \mathrm{~K} \pm 2 \%$		
203CT－4		20k Ω		3410K $\pm 2 \%$		
473CT－4		$47 \mathrm{k} \Omega$		$3610 \mathrm{~K} \pm 2 \%$		
513CT－4		51 k ，		$3610 \mathrm{~K} \pm 2 \%$		
563CT－4		$56 \mathrm{k} \Omega$		$3610 \mathrm{~K} \pm 2 \%$		
104CT－4		$100 \mathrm{k} \Omega$		$3450 \mathrm{~K} \pm 2 \%$		
204CT－4		200k Ω		$3500 \mathrm{~K} \pm 2 \%$		
103CT－01006	$25^{\circ} \mathrm{C}$	$10 \mathrm{k} \Omega$	$\pm 5 \%$	3900K $\pm 2 \%$	$-30 \sim+150$	$\begin{gathered} \text { すず } \\ \text { めっき } \end{gathered}$
103CT－21048	$25^{\circ} \mathrm{C}$	$10 \mathrm{k} \Omega$	$\pm 3 \%$	$4100 \mathrm{~K} \pm 2 \%$	$-40 \sim+150$	
503CT－91027	$50^{\circ} \mathrm{C}$	$19.727 \mathrm{k} \Omega$	$\pm 2.5 \%$	3992K $\pm 2 \%$		
104CT－90113	$25^{\circ} \mathrm{C}$	$100 \mathrm{k} \Omega$	$\pm 5 \%$	4070K $\pm 2 \%$		

－熱放散定数：約 $2.1 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$－熱時定数：約 $10 \mathrm{~s} \sim 20 \mathrm{~s}$＊2－定格電力： 10.5 mW at $25^{\circ} \mathrm{C}$
※1： $25^{\circ} \mathrm{C}, ~ 85^{\circ} \mathrm{C}$ におけるゼロ負荷抵抗値より算出
※2：静止空気中にて測定

外形寸法図

－性 能

試験名	条 件	判定基準
はんだ而熱性	（1）：260ㄷ 10 s （フローソルダリング）	$\Delta \mathrm{R}, \Delta \mathrm{~B} \pm 2 \%$外観
	（2）：340 ${ }^{\circ} \mathrm{C} 3.5 \mathrm{~s}$（こてはんだ付け）	
はんだ付け性	$245^{\circ} \mathrm{C} 2 \mathrm{~s}$（フラックス：ロジンエタノール）	はんだ付着率 50\％以上 （はんだ付着率 95% 以上）${ }^{* 4 * 55 * 6}$
端子引張り	5N 10s	$\begin{aligned} & \Delta \mathrm{R}, \Delta \mathrm{~B} \pm 2 \% \\ & \text { 外観 } \end{aligned}$
端子曲げ	$2.5 \mathrm{~N} 90^{\circ}$ 曲げ 2回	
自然落下	$\mathrm{H}=1 \mathrm{~m} 3$ 回（棫板上）	
耐電圧	AC 500V 1分間	1 mA 末満
絶縁抵抗	DC 500V	100 M の以上 （50M Ω 以上）${ }^{* 4}$
高温試験	$\begin{aligned} & 250^{\circ} \mathrm{C}\left(200^{\circ} \mathrm{C}\right)^{* 3}\left(150^{\circ} \mathrm{C}\right)^{* 4, * 6}\left(125^{\circ} \mathrm{C}\right)^{* 5} \\ & 1000 \mathrm{~h} \end{aligned}$	
高温高湿試験	$40^{\circ} \mathrm{C}$ 相対湿度 90% 1000h	
温度サイクル 試験	$-30^{\circ} \mathrm{C}(30 \mathrm{~min}) \rightarrow$ 常温 $(3 \mathrm{~min})$ $\rightarrow 200^{\circ} \mathrm{C}(30 \mathrm{~min}) \rightarrow$ 常温 $(3 \mathrm{~min}) 5$ サイクル $\left[-40^{\circ} \mathrm{C}(30 \mathrm{~min}) \rightarrow\right.$ 常温 $(3 \mathrm{~min})$ $\rightarrow 150^{\circ} \mathrm{C}(30 \mathrm{~min}) \rightarrow$ 常温 $(3 \mathrm{~min}) 5$ サイクル $]^{* 4, * 6}$ $\left[-25^{\circ} \mathrm{C}(30 \mathrm{~min}) \rightarrow\right.$ 常温 $(3 \mathrm{~min})$ $\rightarrow 125^{\circ} \mathrm{C}(30 \mathrm{~min}) \rightarrow$ 常温 $(3 \mathrm{~min}) 5$ サイクル $]^{* 5}$	

※3：（ ）内は252CT，512CT，562CT
※4：（ ）［ ］内は103CT－21048，103CT－01006
※5：（ ）［ ］内は503CT－91027
※5：（ ）［ ］内は503CT－91027
※6：（ \quad［ ］内は104CT－90113

抵抗一温度特性

$\begin{aligned} & \text { 温度 } \\ & \left({ }^{\circ} \mathrm{C}\right) \end{aligned}$	形 名															
	252CT	512CT	562CT	912CT	103CT	113CT	203CT	473CT	513CT	563CT	104CT	204CT	$\begin{aligned} & \hline 103 C T- \\ & 21048 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 103 \mathrm{CT}- \\ & 01006 \end{aligned}$	$\begin{aligned} & \hline \text { 503CT- } \\ & 91027 \end{aligned}$	$\begin{aligned} & \hline 104 \mathrm{CT}- \\ & 90113 \end{aligned}$
－50	120.2	137.9	151.4	278.3	305.8	336.4	604.8	1506	1634	1794	3200	6803				
－40	65.60	81.02	88.96	159.9	175.7	193.3	350.2	867.5	941.3	1034	1863	3913	458.9		1947	
－30	36.48	48.93	53.73	94.63	104.0	114.4	207.9	512.6	556.2	610.8	1105	2306	223.1	183.3	1010	1862
－20	20.91	30.56	33.55	58.02	63.76	70.13	127.8	313.4	340.1	373.4	675.1	1397	114.8	98.80	547.9	1011
－10	12.32	19.65	21.58	36.67	40.29	44.32	81.00	197.2	214.0	235.0	424.3	870.3	62.13	55.69	309.7	571.0
0	7.516	12.96	14.23	23.82	26.18	28.79	52.63	127.1	138.0	151.5	272.2	553.6	35.15	32.67	181.6	334.0
10	4.738	8.779	9.639	15.92	17.49	19.24	35.15	84.16	91.32	100.3	179.4	362.5	20.70	19.86	110.2	201.7
20	3.074	6.080	6.676	10.91	11.99	13.18	24.02	56.86	61.70	67.75	120.9	242.5	12.64	12.48	68.90	125.5
25	2.500	5.100	5.600	9.100	10.00	11.00	20.00	47.00	51.00	56.00	100.0	200.0	10.00	10.00	55.06	100.0
30	2.045	4.296	4.717	7.627	8.381	9.219	16.74	39.01	42.33	46.48	83.11	165.7	7.972	8.071	44.30	80.21
40	1.393	3.095	3.398	5.442	5.980	6.578	11.88	27.07	29.37	32.25	58.24	115.4	5.177	5.362	29.22	52.55
50	0.9698	2.267	2.489	3.952	4.342	4.777	8.570	19.05	20.68	22.70	41.52	81.91	3.453	3.649	19.73	35.23
60	0.6895	1.687	1.852	2.918	3.206	3.527	6.239	13.58	14.74	16.18	30.14	59.14	2.359	2.540	13.61	24.12
70	0.4993	1.270	1.394	2.184	2.400	2.640	4.581	9.807	10.64	11.69	22.19	43.36	1.648	1.804	9.574	16.84
80	0.3680	0.9650	1.060	1.656	1.820	2.002	3.401	7.187	7.798	8.559	16.57	32.28	1.175	1.305	6.860	11.97
85	0.3178	0.8443	0.9271	1.448	1.592	1.751	2.943	6.180	6.706	7.363	14.39	27.97	0.9988	1.118	5.844	10.16
90	0.2757	0.7402	0.8128	1.269	1.394	1.534	2.553	5.328	5.781	6.348	12.53	24.33	0.8531	0.9609	4.999	8.654
100	0.2098	0.5736	0.6298	0.9787	1.076	1.183	1.937	3.997	4.337	4.762	9.586	18.57	0.6302	0.7187	3.700	6.354
120	0.1267	0.3559	0.3908	0.5952	0.6540	0.7194	1.156	2.337	2.535	2.784	5.828	11.24	0.3601	0.4196	2.115	3.574
140	0.08028	0.2298	0.2524	0.3750	0.4121	0.4533	0.7191	1.425	1.546	1.698	3.694	7.108	0.2172	0.2577	1.127	2.115
150	0.06494	0.1870	0.2053	0.3016	0.3314	0.3646	0.5752	1.129	1.226	1.346	2.982	5.732	0.1717	0.2054	1.002	1.654
160	0.05302	0.1534	0.1684	0.2445	0.2686	0.2955	0.4638	0.9031	0.9799	1.076	2.428	4.666				
180	0.03630	0.1055	0.1158	0.1643	0.1805	0.1986	0.3091	0.5919	0.6423	0.7052	1.647	3.168				
200	0.02562	0.07445	0.08175	0.1136	0.1249	0.1374	0.2122	0.4000	0.4341	0.4766	1.150	2.216				
220				0.08063	0.08860	0.09746	0.1497	0.2780	0.3016	0.3312	0.8235	1.591				
240				0.05857	0.06436	0.07080	0.1082	0.1979	0.2148	0.2358	0.6038	1.169				
250				0.05031	0.05529	0.06082	0.09271	0.1683	0.1827	0.2006	0.5208	1.010				
注意事項 - リート線をはんだで接続するときは，ガラス封止部端から5mm以上離れた位置ではんだして下さい。 - リード線を加工するときは，ガラス封止部端から5mm以上離れた位置を固定して行って下さい。																

非接触温度センサ

गc＇sensos

NCセンサは感熱素子に超小型サーミスタを採用した，使う場所を選ばない非接触温度センサです。今まで赤外線センサを採用できなかった環境での使用が可能です。

形 名


```
用途 \(F\) ：OA用
サーミスタ式非接触温度センサ
```


－用 途

OA機器，非接触温度計測

定 格

項目	性能	条件
検知温度	$180^{\circ} \mathrm{C} \pm 3^{\circ} \mathrm{C}$	黒体温度 $180^{\circ} \mathrm{C}$ ，補償温度 $100^{\circ} \mathrm{C}$
		ローラ径 40 mm ，測定距離 5 mm
応答性	$1.3 \mathrm{~s} \pm 0.5 \mathrm{~s}$	検知温度が黒体温度の 63.2% に達する時間
使用温度範囲	$-10^{\circ} \mathrm{C} \sim 150^{\circ} \mathrm{C}$	－
検知温度範囲	$-20^{\circ} \mathrm{C} \sim 260^{\circ} \mathrm{C}$	－
サーミスタ抵抗値	$7 \mathrm{k} \Omega \pm 3 \%$	$180^{\circ} \mathrm{C}$ におけるゼロ負荷抵抗値
サーミスタB定数	$3370 \mathrm{~K} \pm 1 \%$	$25^{\circ} \mathrm{C}$ と $85^{\circ} \mathrm{C}$ のゼロ負荷抵抗値より算出

\square 性 能

試験名	条件	判定基準
高温試験	$150^{\circ} \mathrm{C}$ 1000h	検知温度の対初期変化 $\pm 5^{\circ} \mathrm{C}$
高温負荷試験	$150^{\circ} \mathrm{C} 5 \mathrm{~V}$ 1000h	
$\begin{aligned} & \text { 淐度サイクル } \\ & \text { 試験 } \end{aligned}$	$\begin{aligned} & -20^{\circ} \mathrm{C}(30 \mathrm{~min}) \rightarrow \text { 室温 }(5 \mathrm{~min}) \rightarrow \\ & 150^{\circ} \mathrm{C}(30 \mathrm{~min}) \rightarrow \text { 室温 }(5 \mathrm{~min}) 5 \text { サイクル } \end{aligned}$	
絶縁抵抗	DC 500V アルミケースとコンタクト間	100M 2 以上
耐電圧	AC 500V 1分間 アルミケースとコンタクト間	$1 \mathrm{mA以下}$

外形寸法図

（単位：mm）

温度変換回路例

テーブルデータ（参考値）

		ローラ温度（ ${ }^{\circ} \mathrm{C}$ ）													
補償温度 （ ${ }^{\circ} \mathrm{C}$ ）	補償出力 （Vc）	0	20	40	60	80	100	120	140	160	180	200	220	240	260
		検知出力（Vd）													
0	4.838	4.838	4.836	4.834	4.831	4.827	4.823	4.818	4.812	4.805	4.797	4.787	4.775	4.760	4.741
10	4.758		4.757	4.754	4.750	4.745	4.740	4.733	4.726	4.716	4.706	4.692	4.677	4.658	4.634
20	4.651		4.651	4.646	4.641	4.635	4.628	4.620	4.610	4.599	4.585	4.569	4.549	4.525	4.496
30	4.509			4.506	4.500	4.493	4.484	4.474	4.462	4.448	4.431	4.411	4.388	4.359	4.325
40	4.331			4.331	4.323	4.315	4.304	4.292	4.278	4.262	4.242	4.219	4.191	4.158	4.119
50	4.115				4.110	4.100	4.088	4.075	4.059	4.040	4.018	3.992	3.961	3.925	3.881
60	3.863				3.863	3.852	3.839	3.824	3.806	3.786	3.762	3.734	3.701	3.662	3.615
70	3.581					3.574	3.561	3.545	3.527	3.505	3.481	3.452	3.418	3.377	3.329
80	3.277					3.277	3.263	3.247	3.228	3.207	3.183	3.154	3.120	3.079	3.032
90	2.962						2.955	2.939	2.922	2.901	2.877	2.849	2.816	2.778	2.732
100	2.648						2.648	2.633	2.616	2.597	2.575	2.549	2.518	2.482	2.440
110	2.344							2.337	2.322	2.304	2.284	2.260	2.233	2.200	2.162
120	2.058							2.058	2.045	2.029	2.011	1.991	1.966	1.938	1.904
130	1.796								1.790	1.777	1.761	1.743	1.723	1.698	1.669
140	1.560								1.560	1.549	1.536	1.521	1.503	1.482	1.458
150	1.352									1.347	1.336	1.323	1.309	1.291	1.271

[^3]
非接触温度センサ

高精度サーミスタと独自のシリコンマイクロマシニング技術を融合させた サーモパイル型赤外線センサです。

形 名

10TP583T

用 途

耳式体温計，OA機器，エアコン，セキュリティ機器，電子レンジ，冷蔵庫，非接触温度計測，放射温度計

定 格

項目	特性	備考
受光面積	$1.05 \mathrm{~mm} \times 1.05 \mathrm{~mm}$	吸収膜サイズ
出力電压＊	$200 \mu \mathrm{~V} \pm 30 \%$	－－
出力電圧＊2	$1.00 \mathrm{mV} \pm 30 \%$	－
サーモパイル抵抗	65k』土30\％	$25^{\circ} \mathrm{C}$ における抵抗値
時定数	15 ms	代表値
使用温度範囲	$-20^{\circ} \mathrm{C} \sim 100^{\circ} \mathrm{C}$	－
保存温度範囲	$-40^{\circ} \mathrm{C} \sim 100^{\circ} \mathrm{C}$	－
視野角	$\pm 50 \mathrm{deg}$ ．	感度50\％になる入射角
透過波長帯域	cut on $5 \mu \mathrm{~m}$	－
サーミスタ抵抗値	100k』 $\pm 3 \%$	$25^{\circ} \mathrm{C}$ におけるゼロ負荷抵抗値
サーミスタB定数	$3435 K \pm 0.7 \%$	$25^{\circ} \mathrm{C}, ~ 85^{\circ} \mathrm{C}$ における ゼロ負荷抵抗値より算出

```
※ 1測定条件
    黒体炉 :500
    センサ黒体炉間距離
    センサ温度
    アパーチャ径
        :500K
        ※2測定条件
    黒体炉:310K
    センサ温度 :298K
    センサ温度
```

 性 能
 | 試験名 | 条件 | 判定基準 | |
| :---: | :---: | :---: | :---: |
| 高温試験 | $100^{\circ} \mathrm{C}$ 1000h | $\begin{aligned} & \text { サーモパイル } \\ & \text { サーミスタ } \end{aligned}$ | $\begin{aligned} & : \Delta \mathrm{V} \pm 2 \% \\ & : \Delta \mathrm{R} \pm 0.5 \% \\ & : \Delta \mathrm{B} \pm 0.2 \% \end{aligned}$ |
| 高温高湿試験 | $60^{\circ} \mathrm{C}$ 相対湿度85\％1000h | $\begin{array}{ll} \text { サーモパイル } & : \Delta \mathrm{V} \pm 2 \% \\ \text { サーミスタ } & : \Delta \mathrm{R} \pm 0.3 \% \\ & : \Delta \mathrm{B} \pm 0.2 \% \end{array}$ | |
| 温度サイクル 試験 | $\begin{aligned} & \text { 室温 }(3 \mathrm{~min}) \rightarrow-20^{\circ} \mathrm{C}(30 \mathrm{~min}) \rightarrow \\ & \text { 室 }(3 \mathrm{~min}) \rightarrow 100^{\circ} \mathrm{C}(30 \mathrm{~min}) \\ & 1 \text { ササイクル }^{(0)} \\ & \hline \end{aligned}$ | | |
| はんだ而熱性 | $350^{\circ} \mathrm{C}$ 5s | | |
| 自然落下 | $\mathrm{H}=1 \mathrm{~m}$ 3回（コンクリート上） | | |

テーブルデータ（参考値）

		センサ温度［ $\left.{ }^{\circ} \mathrm{C}\right]$								
		－20	－10	0	10	25	40	60	80	100
対象物温度 ［ ${ }^{\circ} \mathrm{C}$ ］	－20	0.000	－0．510	－1．081	－1．718	－2．809	－4．078	－6．078	－8．473	－11．31
	－10	0.510	0.000	－0．571	－1．208	－2．300	－3．568	－5．568	－7．963	－10．80
	0	1.081	0.571	0.000	－0．637	－1．728	－2．997	－4．997	－7．392	－10．23
	10	1.718	1.208	0.637	0.000	－1．091	－2．360	－4．360	－6．755	－9．593
	30	3.211	2.702	2.131	1.493	0.402	－0．867	－2．867	－5．261	－8．099
	37	3.809	3.300	2.728	2.091	1.000	－0．269	－2．269	－4．664	－7．501
	40	4.078	3.568	2.997	2.360	1.269	0.000	－2．000	－4．395	－7．233
	60	6.078	5.568	4.997	4.360	3.269	2.000	0.000	－2．395	－5．233
	80	8.473	7.963	7.392	6.755	5.664	4.395	2.395	0.000	－2．838
	100	11.31	10.80	10.23	9.593	8.501	7.233	5.233	2.838	0.000
	120	14.64	14.13	13.56	12.93	11.83	10.57	8.565	6.171	3.333
	140	18.53	18.02	17.45	16.81	15.72	14.45	12.45	10.05	7.215
	160	23.01	22.51	21.93	21.30	20.21	18.94	16.94	14.54	11.70
	180	28.17	27.66	27.09	26.45	25.36	24.09	22.09	19.70	16.86
	200	34.06	33.55	32.98	32.34	31.25	29.98	27.98	25.58	22.75

 power thermistos
パワーサーミスタは，スイッチング電源等の電源投入時に発生する
突入電流抑制用の抵抗器をパワーサーミスタに置き換えてご使用いただくと，
定常時は自己発熱により抵抗値が減少する為，電力口スが少なくなり，省エネに貢献します。

－用 途

スイッチング電源，アダプタ，バッテリチャージャー，医療機器， $O A$ 機器，$A V$ 機器，エアコン，セキュリティ機器，家電住設機器， インバータ，ロボット，FA機器，パワーコンディショナー，情報通信機器

取得規格：UL1434 file No．E92669（1D2－22を除く）

外形寸法図

	D	T	H	HO	d	リード線径
D2－05	8．5max．	7．Omax．	11．5max．	15．5max．	5.0 ± 1	Ф0．8
D2－07	11．0max．	9．0max．	13．0max．	16．0max．		
D2－08	10．0max．	7．0max．	13．0max．	17．0max．		
D2－10	13．0max	9．0max．	17．0max．	19．5max．		
D2－11	11．5max．	8．Omax．	15．0max．	18．5max．	7.5 ± 1	
D2－13	14．5max．	8．0max．	18．0max．	21.5 max ．		
D2－14	17．0max．	9．0max．	21．0max．	22.5 max．		
D2－15	16．5max．	8．0max．	20．0max．	23．0max	10 ± 1	$\begin{gathered} \Phi 1.0 \\ (\Phi 0.8)^{* 2} \end{gathered}$
D2－18	19．5max．	8．Omax．	23．0max．	26．0max．		
D2－22	23．0max	$\begin{array}{\|c\|} \hline \text { 8.5max. } \\ \text { (8.0max.) } \\ \hline \end{array}$	26．5max．	29．5max．		

テーピング寸法図

	P	PO	P1	W	WO	W1	W2	H1	H2	L	F1	ФD0	t	t1	$\Delta \mathrm{h}$
D2－05	$\begin{array}{r} 15.0 \\ \pm 1.0 \end{array}$	$\begin{aligned} & 15.0 \\ & \pm 0.3 \end{aligned}$	$\begin{gathered} 5.0 \\ \pm 0.7 \end{gathered}$	$\begin{gathered} 17.5 \\ \sim 19.0 \end{gathered}$	$\begin{gathered} \min . \\ 5.0 \end{gathered}$	$\begin{gathered} 9.0 \\ \pm 0.5 \end{gathered}$	$\begin{gathered} \text { max. } \\ 3.0 \end{gathered}$	$\begin{aligned} & 16.0 \\ & \pm 0.5 \end{aligned}$	$\begin{gathered} 19.0 \\ \sim 21.5 \end{gathered}$	$\begin{gathered} \max . \\ 1.0 \end{gathered}$		$\begin{gathered} 4.0 \\ \pm 0.2 \end{gathered}$	$\begin{gathered} 0.6 \\ \pm 0.3 \end{gathered}$	$\begin{gathered} \max . \\ 1.5 \end{gathered}$	$\begin{gathered} 0 \\ \pm 2.0 \end{gathered}$
D2－07											5.0				
D2－08											± 0.5				
D2－10															
D2－11															
D2－13	30.0		3.75 ± 0.7								7． ± 0.5				

－最少相包単位： 1000 個／箱

	公称ゼロ負荷	公称B定数＊3	最大許容電流	残留抵抗値	$\begin{aligned} & \text { 熱時 } \\ & \text { 定数 }{ }^{* 4} \end{aligned}$	熱放散定数 ${ }^{*}$	使用温度範囲	許容コンデンサ容量				瞬時エネル ギー耐量＊${ }^{* 1}$
形 名	抵抗値R25	$\mathrm{B}_{25 / 85}$						AC	AC	AC	AC	
形 名	（ $\pm 15 \%$ ）	（ $\pm 5 \%$ ）	at $25^{\circ} \mathrm{C}$					100V	120V	220V	240V	
	（ Ω ）	（K）	（A）	（ Ω ）	（s）	$\left(\mathrm{mW} /{ }^{\circ} \mathrm{C}\right)$	$\left({ }^{\circ} \mathrm{C}\right)$	（ $\mu \mathrm{F}$ ）	（J）			
5D2－05	5.0	2650	2.0	0.48	20	15	－50～150	860	600	170	150	4.3
10D2－05	10.0	2700	1.0	0.91	20	7	－50～150	860	600	170	150	4.3
20D2－05	20.0	2800	0.3	1.66	20	1	－50～150	860	600	170	150	4.3
5D2－07	5.0	2800	3.0	0.36	35	30	－40～160	400	260	80	60	1.9
8D2－07	8.0	2800	2.0	0.58	41	30	－40～160	560	360	110	90	2.6
10D2－07	10.0	2800	2.0	0.72	45	30	－40～160	680	470	140	110	3.3
12D2－07	12.0	2900	1.7	0.78	41	30	－40～160	380	260	80	60	1.9
16D2－07	16.0	2900	2.0	1.04	45	30	－40～160	800	530	160	130	3.8
22D2－07	22.0	2900	1.0	1.43	50	30	－40～160	960	630	190	150	4.5
5D2－08	5.0	2700	3.0	0.35	35	22	－50～170	1260	880	260	220	6.3
10D2－08	10.0	2800	2.0	0.63	35	17	－50～170	1260	880	260	220	6.3
15D2－08	15.0	2800	2.0	0.94	35	26	－50～170	2880	2000	590	500	14.0
20D2－08	20.0	2900	1.0	1.13	35	8	－50～170	2880	2000	590	500	14.0
2D2－10	2.0	2800	5.0	0.15	50	32	－40～160	1640	1100	330	270	7.9
3D2－10	3.0	2800	4.0	0.22	53	32	－40～160	1720	1170	350	290	8.4
5D2－10	5.0	2900	4.0	0.33	53	32	－40～160	1440	970	290	240	7.0
8D2－10	8.0	2900	3.0	0.52	70	32	－40～160	1560	1070	320	260	7.7
10D2－10	10.0	2900	3.0	0.65	75	32	－40～160	1640	1100	330	270	7.9
12D2－10	12.0	3000	1.8	0.71	53	32	－40～160	830	580	170	140	4.1
16D2－10	16.0	3000	1.6	0.94	70	32	－40～160	830	580	170	140	4.1
2D2－11	2.0	2650	5.0	0.15	40	26	－50～170	2700	1880	550	470	13.0
3D2－11	3.0	2650	4.0	0.22	40	24	－50～170	4830	3360	990	840	24.0
4D2－11	4.0	2700	4.0	0.28	40	31	－50～170	2880	2000	590	500	14.0
5D2－11	5.0	2700	4.0	0.35	40	39	－50～170	2700	1880	550	470	13.0
8D2－11	8.0	2800	3.0	0.50	40	31	－50～170	2700	1880	550	470	13.0
10D2－11	10.0	2800	3.1	0.63	40	42	－50～170	2880	2000	590	500	14.0
12D2－11	12.0	2800	2.0	0.75	40	21	－50～170	4030	2800	830	700	20.0
15D2－11	15.0	2950	2.5	0.80	40	34	－50～170	2880	2000	590	500	14.0
16D2－11	16.0	2950	2.5	0.86	40	37	－50～170	2880	2000	590	500	14.0
20D2－11	20.0	3000	2.0	1.02	40	28	－50～170	2880	2000	590	500	14.0
1D2－13	1.0	2650	6.0	0.06	55	12	－50～200	860	600	170	150	4.3
2D2－13	2.0	2700	6.0	0.10	55	21	－50～200	860	600	170	150	4.3
4D2－13	4.0	2800	5.0	0.18	55	24	－50～200	860	600	170	150	4.3
4．7D2－13	4.7	2900	5.0	0.18	55	26	－50～200	2700	1880	550	470	13.0
5D2－13	5.0	2900	5.0	0.19	55	27	－50～200	2700	1880	550	470	13.0
8D2－13	8.0	3000	4.0	0.27	25	25	－50～200	2880	2000	590	500	14.0
10D2－13	10.0	3050	4.0	0.32	55	29	－50～200	2880	2000	590	500	14.0
12D2－13	12.0	3000	4.0	0.41	55	37	－50～200	4830	3360	990	840	24.0
15D2－13	15.0	3050	3.0	0.48	55	25	－50～200	4830	3360	990	840	24.0
16D2－13	16.0	3050	3.0	0.51	55	26	－50～200	4830	3360	990	840	24.0
2D2－14	2.0	2800	5.0	0.15	90	36	－40～160	4200	2890	860	720	20.8
3D2－14	3.0	2900	5.0	0.20	80	36	－40～160	3080	2110	630	520	15.2
4D2－14	4.0	2900	5.0	0.26	95	36	－40～160	3400	2350	700	580	16.9
5D2－14	5.0	2900	4.0	0.33	110	36	－40～160	3600	2480	740	620	17.9
8D2－14	8.0	3000	2.5	0.47	80	36	－40～160	1390	970	280	240	6.9
10D2－14	10.0	3000	2.2	0.59	95	36	－40～160	1790	1240	370	310	8.9
12D2－14	12.0	3000	2.0	0.71	105	36	－40～160	2190	1520	450	380	10.9
16D2－14	16.0	3000	1.8	0.94	115	36	－40～160	2790	1940	570	480	13.9
1D2－15	1.0	2650	8.0	0.06	70	22	－50～200	6910	4800	1420	1200	34.0
1．5D2－15	1.5	2650	8.0	0.08	70	29	－50～200	6910	4800	1420	1200	34.0
2D2－15	2.0	2700	8.0	0.10	70	37	－50～200	6910	4800	1420	1200	34.0
3D2－15	3.0	2800	7.0	0.13	70	36	－50～200	4030	2800	830	700	20.0
4D2－15	4.0	2800	7.0	0.18	70	48	－50～200	4030	2800	830	700	20.0
4．7D2－15	4.7	2900	6.0	0.18	70	37	－50～200	4030	2800	830	700	20.0
5D2－15	5.0	2900	6.0	0.19	70	39	－50～200	4030	2800	830	700	20.0
8D2－15	8.0	3000	5.0	0.27	70	39	－50～200	4030	2800	830	700	20.0
10D2－15	10.0	3000	5.0	0.34	70	49	－50～200	5760	4000	1190	1000	28.0
12D2－15	12.0	3050	5.0	0.39	70	54	－50～200	5760	4000	1190	1000	28.0
15D2－15	15.0	3100	4.0	0.45	70	41	－50～200	5760	4000	1190	1000	28.0
16D2－15	16.0	3100	4.0	0.48	70	44	－50～200	5760	4000	1190	1000	28.0
4D2－18	4.0	2900	8.0	0.16	90	59	－50～200	6910	4800	1420	1200	34.0
5D2－18	5.0	2950	8.0	0.18	90	66	－50～200	6910	4800	1420	1200	34.0
8D2－18	8.0	3050	6.0	0.26	90	53	－50～200	6910	4800	1420	1200	34.0
10D2－18	10.0	3100	6.0	0.30	90	62	－50～200	6910	4800	1420	1200	34.0
47D2－18	47.0	3450	2.0	0.94	90	21	－50～200	6910	4800	1420	1200	34.0
1D2－22	1.0	2900	12.0	0.04	125	32	－50～200	8200	－	1700	－	41.0
3D2－22	3.0	2800	8.0	0.13	130	48	－50～200	12600	8800	2610	2200	63.0
4D2－22	4.0	2900	8.0	0.16	130	59	－50～200	12600	8800	2610	2200	63.0
6D2－22	6.0	3000	6.0	0.21	130	43	－50～200	12600	8800	2610	2200	63.0

※3：一部参考値，※4：参考値

■ 性 能

試験名	条 件	判定基準
はんだ耐熱性	（1）260 ${ }^{\circ} \mathrm{C}$ 10s	$\Delta R \pm 15 \%$
	（2） $350^{\circ} \mathrm{C} \quad 5 \mathrm{~s}$	
はんだ付け性	$245^{\circ} \mathrm{C}$ 3s（フラックス：ロジンエタノール）	はんだ付着率 95\％以上
端子引張り	10N 10s	$\Delta \mathrm{R} \pm 15 \%$
耐電圧	AC 1000V 1分間	1mA末満
絶縁抵抗	DC 500V	100M 2 以上
高温試験	各形名の最高使用温度 1000h	$\Delta \mathrm{R} \pm 20 \%$
高湿試験	$40^{\circ} \mathrm{C}$ 相対湿度90\％1000h	
温度サイクル試験	$\begin{aligned} & -40^{\circ} \mathrm{C}(30 \mathrm{~min}) \rightarrow \text { 室温 }(5 \mathrm{~min}) \rightarrow 160^{\circ} \mathrm{C}(30 \mathrm{~min}) \rightarrow \\ & \text { 室温 }(5 \mathrm{~min}) \quad 10 \text { サクル } \end{aligned}$	$\Delta R \pm 15 \%$
通電負荷試験	最大許容電流 1000 h （周囲温度 $25^{\circ} \mathrm{C}$ ）	$\Delta \mathrm{R} \pm 20 \%$

－注意事項

－リード線に力が加わった場合，パンツレッグ付近にクラック，カケを生じることがあります。
－動作中は高温になりますので，リード線への接続方法，部材の耐熱周辺部品の配置には十分配慮して下さい。
－複数個を並列に接続して使用しないで下さい。

SE／／／H／EC SEMITEC株式会社

－本 社
〒130－8512 東京都墨田区錦糸1－7－7 TEL：03－3621－2703 FAX：03－3623－6100
E－mail：（国內営業）sales＠mail．semitec．co．jp（海外営業）overseas＠mail．semitec．co．jp
西日本営業所
〒532－0004 大阪市淀川区西宮原2－7－38 新大阪西浦ビル
〒532－0004 大阪市淀川区西宮原2－7－38 新大阪
TEL：06－6391－6491（代）FAX：06－6395－3649
TEL：06－639
名古屋出張所
〒465－0093 愛知県名古屋市名東区一社3－96 ルーブルビル304 TEL：052－734－2202 FAX：052－734－2227
〔海外販売綱〕
\square SEMITEC KOREA CO．，LTD．（韓 国）
\＃301－1，Daeryung Tecnotown I，327－24，Kasan－Dong，Kumchon－Gu，SEOUL，KOREA TEL：82－2－3281－1155 FAX：82－2－3281－3338 E－mail：semitec＠semiteckorea．com
－SEMITEC INTERNATIONAL（SHANGHAI）CO．，LTD．（上 海）
Room 308，Hongwell International Plaza，NO． 1600 Zhongshan Road（W），Xuhui District，Shanghai ，P．R．China
TEL：86－021－5308－6000 FAX：86－021－5830－5008 E－mail：sales＠semitec－shanghai．com
－SEMITEC TRADING（Shenzhen）CO．，LTD．（深 圳）
No．2405，Changping Commercial Bldg．，Honghua Road，Futian Free Trade Zone，Shenzhen，Guangdong Province，China TEL：＋86－755－2971－5932 FAX：＋86－755－2723－5004 E－mail：jinxin＠semitec－ssc．com
－SEMITEC（HONG KONG）CO．，LTD．（香 港）
Units 1\＆2，10／F．，Central Commercial Tower，No． 736 Nathan Road，Mongkok，Kowloon，Hongkong
TEL：852－2369－6773 FAX：852－2739－2396 E－mail ：semihk＠netvigator．com
－Thai Semitec Co．，Ltd．（タ 1）
16／2 Moo 6，Tambol Nong Khang Khok，Amphur Muang Chonburi，Chonburi Province 20000
TEL：＋66－38－190－363 Ext 0 FAX：＋66－38－190－363 Ext 112 E－mail：sales＠thaisemitec．com
－SEMITEC USA CO．（米 国）
2377 Crenshaw Blvd．，Suite 310，Torrance，CA 90501，USA
TEL：＋1－310－540－2330 FAX：＋1－310－540－2331 E－mail ：sales＠semitec－usa．com
－SEMITEC TAIWAN CORP．（台 湾）
6F No，45 sec．1，Minquan E．Rd，Taipei City，Taiwan
TEL：886－2－2593－6622 FAX：886－2－2593－0089 E－mail：sales＠semitec．com．tw

この度は，弊社製品をご検討頂きありがとうございます。弊社製品のご使用に当たっては
以下の各項目の注意事項をご理解・でく承のうえご使用頂きますようお願い申し上げます。
1）当社制品について，カタログに記載をれた用途以外または，人命または財産に危害を及ばす恐れがある高信賴性を要求される下記ご用途でて使用を检討いただく場合につきましては，必ず当社学業部までく連絡ください。また，必ぎフエイル・セーフ機構を梌討して下さい。

2）信唃
2）信唃

い下さい。

ホームページ開設中 Visit us on the web at http：／／www－semitec．co．jp
カタログの記載内容は予告なく変更することがありますのでご諒承下さい。
代理店

[^0]: ※1： $25^{\circ} \mathrm{C}$ におけるゼロ負荷抵抗値 ※2： $25^{\circ} \mathrm{C}, ~ 85^{\circ} \mathrm{C}$ におけるゼロ負荷抵抗値より算出 ※3：静止空気中にて測定

[^1]: ※ 10：45 ${ }^{\circ} \mathrm{C}$ におけるゼロ負荷抵抗値

[^2]: ※4：（ ）内は103HT，103HT－1Pの試験温度条件

[^3]: 測定条件
 印加電圧（E）：5V
 外付け抵抗値（R1，R2）：33k Ω
 黒体ローラ
 取り付け距離 $\quad: ~ . ~ 540$

